Skip to main content
Log in

Urban Atmospheric Chemistry During the PUMA Campaign 1: Comparison of Modelled OH and HO2 Concentrations with Measurements

  • Published:
Journal of Atmospheric Chemistry Aims and scope Submit manuscript

Abstract

Photochemical box modelling was undertaken to investigate OH and HO2 radical chemistry during summer and winter field campaigns in the urban city-centre of Birmingham in the UK. The model employed the most recent version of the Master Chemical Mechanism (v3.1) and was constrained to 15-minute average measurements of long-lived species determined in situ at the site. The model was used to predict OH and HO2 concentrations for comparison with measurements made by the fluorescence assay by gas expansion technique. Whilst there was generally good agreement between the modelled and measured OH concentrations, particularly during summer, there was sometimes a significant model under-prediction during daylight hours, which significantly skews the overall model: measured agreement. There were less measured data available for HO2, but the agreement between model and measurement for the days where measurements existed were less good than for OH, with one or two exceptions. The modelled:measured ratios between the hours of 11:00–15:00 h for OH were 0.58 and 0.50 for summer and winter respectively. For HO2, the same ratios were 0.56 in the summer and 0.49 in the winter. Sensitivity studies were conducted to attempt to understand the model-measurement discrepancy. The predicted radical concentrations were particularly sensitive to changes in NO X concentrations. Constraining the model to the observed HO2 concentrations made the OH predictions worse. These results highlight the fact that there are many complexities in urban areas and that more highly-instrumented campaigns are required in the future to further our understanding.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Aschmutat, U., Hessling, M., Holland, F., and Hofzumahaus, A., 1994: A tunable source of hydroxyl (OH) and hydroperoxy (HO2) radicals: in the range between 106 and 109 cm−3, in Physico-Chemical Behaviour of Atmospheric Pollutants, G.A. and G. Restelli (eds.), European Commission, Brussels, pp. 811–816.

    Google Scholar 

  • Atkinson, R., 2000: Atmospheric chemistry of VOCs and NO X Atmos. Environ. 34, 2063–2101.

    Article  Google Scholar 

  • Aumont, B., Chervier, F., and Laval, S., 2003: Contribution of HONO sources to the NO X /HO X /O3 chemistry in the polluted boundary layer, Atmos. Environ. 37, 487–498.

    Article  Google Scholar 

  • Brasseur, G. P., Hauglustaine, D. A., Walters, S., Rasch, P. J., Muller, J.-F., Granier, C., and Tie, X. X., 1998: MOZART, a global chemical transport model for ozone and related chemical tracers. 1. Model description, J. Geophys. Res. 103, 28265–28289.

    Article  Google Scholar 

  • Brune, W. H., Stevens, P. S., Mather, J. H., 1995: Measuring OH and HO2 in the troposphere by laser-induced fluorescence at low-pressure, J. of the Atmos. Sci. 52 (19), 3328–3336.

    Google Scholar 

  • Carslaw, N., Creasey, D. J., Heard, D. E., Lewis, A. C., McQuaid, J. B., Pilling, M. J., Monks, P. S., Bandy, B. J., and Penkett, S. A., 1999a: Modelling OH, HO2 and RO2 radicals in the marine boundary layer. 1. Model construction and comparison with field measurements, J. Geophys. Res. 104, 30241–30255.

    Google Scholar 

  • Carslaw, N., Jacobs, P. J., and Pilling, M. J., 1999b: Modelling OH, HO2 and RO2 radicals in the marine boundary layer. 2. Mechanism reduction and uncertainty analysis, J. Geophys. Res. 104, 30257–30273.

    Google Scholar 

  • Carslaw, N., Creasey, D. J., Harrison, D., Heard, D. E., Hunter, M. C., Jacobs, P. J., Jenkin, M. E., Lee, J. D., Lewis, A. C., Pilling, M. J., Saunders, S. M., Seakins, P. W., 2001: Modelling OH and HO2 radicals in a forested region of north-western greece, Atmos. Environ. 35, 4725–4737.

    Google Scholar 

  • Carslaw, N., Creasey, D. J., Heard, D. E., Jacobs, P. J., Lee, J. D., Lewis, A. C., McQuaid, J. B., Pilling, M. J., Monks, P. S., and Penkett, S. A., 2002: Modelling the concentrations of OH, HO2 and RO2 during the EASE97 campaign: 2. Comparison with measurements, J. Geophys. Res., 107, 10.1029/2001JD001568.

  • Creasey, D. J., Evans, G. E., Heard, D. E., and Lee, J. D., 2003: Measurements of OH and HO2 concentrations in the southern ocean marine boundary layer. J. Geophys. Res. 108, DOI:2003JD003206

  • Derwent, R. G., 1996: The influence of human activities on the distribution of hydroxyl radicals in the troposphere, Phil. Trans. R. Soc. London, Series A, 354, 501–531.

    Google Scholar 

  • Harrison, R. M., Yin, J., Tilling, R. M., Cai, X., Seakins, P. W., Hopkins, J. R., Lansley, D. L., Lewis, A. C., Hunter, M. C., Heard, D. E., Carpenter, L. J., Creasey, D. J., Lee, J. D., Pilling, M. J., Carslaw, N., Emmerson, K. M., Redington, A., Derwent, R. G., Ryall, D., Mills, G., and Penkett, S. A., 2004: Measurement and modelling of air pollution and atmospheric chemistry in the U.K. west midlands conurbation: overview of the puma consortium project, in press in Sci. of the Tot. Environ.

  • Heard, D. E., Carpenter, L. J., Creasey, D. J., Hopkins, J. R., Lee, J. D., Lewis, A. C., Pilling, M. J., Seakins, P. W., Carslaw, N., and Emmerson, K. M., 2004: High levels of the hydroxyl radical in the winter urban troposphere, Geophys. Res. Lett. 31, L18112. doi:10.1029/2004GL020544

  • Heard, D. E. and Pilling, M. J. 2003: Measurement of OH and HO2 in the troposphere, Chemical Reviews 103, 5163–5198.

    Article  Google Scholar 

  • Hough, A. M., 1988: The calculation of photolysis rates for use in global tropospheric modelling studies, AERE Rep. R-13259, Her Majesty's Stn. Off., Norwich, England.

    Google Scholar 

  • Jenkin, M. E., Saunders, S. M., Wagner, V., and Pilling, M. J., 2003: Protocol for the development of the master chemical mechanism, MCM v3 (Part B): Tropospheric degradation of aromatic volatile organic compounds, Atmos. Chem. and Phys. 3. 181–193.

    Google Scholar 

  • Kurtenbach, R., Becker, K. H., Gomes, J. A. G., Kleffmann, J., Lorzer, J. C., Spittler, M., Wiesen, P., Ackermann, R., Geyer, A., Platt, U. 2001: Investigations of emissions and heterogeneous formation of HONO in a road traffic tunnel, Atmos. Environ. 35. 3385–3394.

    Article  Google Scholar 

  • Lewis, A. C., Carslaw, N., Marriott, P. J., Kinghorn, R. M., Morrison, P., Lee, A. L., Bartle, K. D., and Pilling, M. J., 2000: A larger pool of ozone-forming carbon compounds in urban atmospheres, Nature, 405, 778–781.

    Article  Google Scholar 

  • Martinez, M. et al., 2003: OH and HO2 concentrations, sources, and loss rates during the Southern oxidants study in Nashville, Tennessee, summer 1999, J. Geophys. Res. 108. DOI:10.1029/2003JD003551

  • Platt, U., Alicke, B., Dubois, R., Geyer, A., Hofzumahaus, A., Holland, F., Martinez, M., Mihelcic, D., Klupfel, T., Lohrmann, B., Patz, W., Perner, D., Rohrer, F., Schafer, J., and Stutz, J., 2002: Free radicals and fast photochemistry during BERLIOZ, J. Atm. Chem. 42(1), 359–394.

    Google Scholar 

  • Poppe, D., Zimmerman, J., Bauer, R., Brauers, T., Brunning, D., Callies, J., Dorn, H-P., Hofzumahaus, A., Johnen, F.-J., Khedim, A., Koch, H., Koppmann, R., London, H., Muller, K.-P., Neuroth, R., Plass-Dullmer, C., Platt, U., Rohrer, F., Roth, E.-P., Rudolph, J., Schmidt, U., Wallasch, M., and Ehalt, D. H., 1994: Comparison of measured OH concentrations with model calculations, J. Geophys. Res., 99, 16,633–16,642.

    Article  Google Scholar 

  • Ravishankara, A. R., 1997: Heterogeneous and multiphase chemistry in the troposphere, Science, 276, 1058–1065.

    Article  Google Scholar 

  • Ren, X., Harder, H., Martinez, M., Lesher, R. L., Oliger, A., Simpas, J. B., Brune, W. H., Schwab, J. J., Demerjian, K. L., He, Y., Zhou, X., and Gao, H, 2003: OH and HO2 chemistry in the urban atmosphere of New York City, Atmos. Environ. 37, 3639–3651.

    Google Scholar 

  • Saunders, S. M., Jenkin, M. E., Derwent, R. G., and Pilling, M. J., 2003: Protocol for the development of the Master Chemical Mechanism, MCM v3 (Part A): Tropospheric degradation of non-aromatic volatile organic compounds. Atmos. Chem. and Phys. 3, 161–180.

    Google Scholar 

  • Sillman, S., 1999. The relation between ozone, NOx and hydrocarbons in urban and polluted rural environments, Atmos. Environ. 33, 1821–1845.

    Article  Google Scholar 

  • Sommariva, R., Haggerstone, A.-L., Carpenter, L. J., Carslaw, N., Creasey, D. J., Heard, D. E., Lee, J. D., Lewis, A. C., Pilling, M. J., and Zádor, J., 2004: OH and HO2 chemistry in clean marine air during SOAPEX-2, Atmos. Chem. Phys. 4, 839–856.

    Article  Google Scholar 

  • Stevens, P. S., Mather, J. H., Brune, W. H., Eisele, F., Tanner, D., Jefferson, A., Cantrell, C., Shetter, R., Sewall, S., Fried, A., Henry, B., Williams, E., Baumann, K., Glodan, P., and Kuster, W, 1997: HO2/OH and RO2/HO2 ratios during the tropospheric OH photochemistry experiment: Measurement and theory, J. Geophys. Res. 102, 6379–6391.

    Google Scholar 

  • Tan, D., Faloona, I., Simpas, J. B., Brune, W., Shepson, P. B., Couch, T. L., Sumner, A. L., Carroll, M. A., Thornberry, T., Apel, E., Riemer, D., and Stockwell, W. J., 2001: HOx budgets in a deciduous forest: Results from the PROPHET summer campaign, Geophys. Res-A. 106, 24407.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to N. Carslaw.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Emmerson, K.M., Carslaw, N., Carpenter, L.J. et al. Urban Atmospheric Chemistry During the PUMA Campaign 1: Comparison of Modelled OH and HO2 Concentrations with Measurements. J Atmos Chem 52, 143–164 (2005). https://doi.org/10.1007/s10874-005-1322-3

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10874-005-1322-3

Keywords

Navigation