Skip to main content

On anomalously high sub-surface dissolved oxygen in the Indian sector of the Southern Ocean

Abstract

The Southern Ocean (SO) plays a critical role in global ocean productivity and carbon cycling. Bio-Argo floats deployed in the Indian sector of the Southern Ocean provides new insights into the biogeochemical processes. Here we report significantly higher dissolved oxygen(DO) (~ 310 μmol/kg) in summer of 2014–2015 for one float (F1) and winter of 2014 in other float (F2) at sub-surface layer in the subantarctic region of the SO. The summer DO peak in F1 was 10% higher than those during the summer of succeeding year, while the winter DO peak in F2 was 20% higher than those during the winter of succeeding year. Temperature and dynamic height structure show that cyclonic eddies play an important role in the observed increase in the dissolved oxygen: the high DO is a manifestation of the co-occurrence of a cold core eddy which transported the cold oxygen rich water from deep to the surface during winter, while, during summer, the high chlorophyll below the mixed layer depth (MLD) also contributed to the elevated DO. Low apparent oxygen utilisation suggests that the observed high oxygen concentration was due to high production rates over the consumption.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

References

  • Ardyna M, Claustre H, Sallée J et al (2017) Delineating environmental control of phytoplankton biomass and phenology in the Southern Ocean. Geophys Res Lett 44:5016–5024

    Article  Google Scholar 

  • BalmasedaTrenberthKällén MAKEE (2013) Distinctive climate signals in reanalysis of global ocean heat content. Geophys Res Lett 40:1754–1759. https://doi.org/10.1002/grl.50382

    Article  Google Scholar 

  • Broecker WS, Peng TH (1982) Tracers in the sea, Lamont-Doherty earth observatory. Palisades, New York

  • Colt J (1984) Computation of dissolved gas concentrations in water as functions of temperature, salinity and pressure. American Fisheries Society Special Publication 14

  • Comiso JC, McClain CR, Sullivan CW et al (1993) Coastal zone color scanner pigment concentrations in the Southern Ocean and relationships to geophysical surface features. Journal of Geophysical Research: Oceans 98:2419–2451

    Article  Google Scholar 

  • Dawson HRS, Strutton PG, Gaube P (2018) The unusual surface chlorophyll signatures of Southern Ocean eddies. J Geophys Res: Oceans 123:6053–6069

    Article  Google Scholar 

  • Dong S, Sprintall J, Gille ST, Talley L (2008) Southern Ocean mixed-layer depth from Argo float profiles. J Geophys Res: Oceans. https://doi.org/10.1029/2006JC004051

    Article  Google Scholar 

  • Falkowski PG (1995) Ironing out what controls primary production in the nutrient rich waters of the open ocean. Glob Change Biol 1:161–163

    Article  Google Scholar 

  • Franks PJS (2015) Has Sverdrup’s critical depth hypothesis been tested? Mixed layers vs. turbulent layers. ICES J Mar Sci 72:1897–1907

    Article  Google Scholar 

  • Frenger I, Münnich M, Gruber N (2018) Imprint of Southern Ocean eddies on chlorophyll. Biogeosciences (BG) 15:4781–4798

    Article  Google Scholar 

  • Frölicher TL, Joos F, Plattner G et al (2009) Natural variability and anthropogenic trends in oceanic oxygen in a coupled carbon cycle–climate model ensemble. Glob Biogeochem Cycles. https://doi.org/10.1029/2008GB00331623

    Article  Google Scholar 

  • Gebbie G, Huybers P (2011) How is the ocean filled? Geophys Res Lett. https://doi.org/10.1029/2011GL046769

    Article  Google Scholar 

  • Gille ST (1994) Mean sea surface height of the Antarctic Circumpolar Current from Geosat data: method and application. J Geophys Res: Oceans 99:18255–18273

    Article  Google Scholar 

  • Gille ST (2008) Decadal-scale temperature trends in the southern hemisphere ocean. J Clim 21:4749–4765. https://doi.org/10.1175/2008JCLI2131.1

    Article  Google Scholar 

  • Ginzburg AI, Kostianoy AG, Frankignoulle M, Delille B (2002) Studies of the fronts in the southern part of the Indian Ocean with the use of satellite temperature data. Issled Zemli iz kosmosa 5:39–49

    Google Scholar 

  • Johnson KS, Plant JN, Riser SC, Gilbert D (2015) Air oxygen calibration of oxygen optodes on a profiling float array. J Atmos Oceanic Tech 32:2160–2172

    Article  Google Scholar 

  • Johnson KS, Claustre H (2016) Bringing biogeochemistry into the Argo age. Eos 97

  • Kahru M, Mitchell BG, Gille ST et al (2007) Eddies enhance biological production in the Weddell-Scotia confluence of the Southern Ocean. Geophys Res Lett. https://doi.org/10.1029/2007GL030430

    Article  Google Scholar 

  • Keeling RF, Körtzinger A, Gruber N (2009) Ocean deoxygenation in a warming world

  • Keeling RF, Körtzinger A, Gruber N (2010) Ocean deoxygenation in a warming world. Ann Rev Mar Sci 2(1):199–229

    Article  Google Scholar 

  • Khatiwala S, Primeau F, Hall T (2009) Reconstruction of the history of anthropogenic CO2 concentrations in the ocean. Nature 462:346–349

    Article  Google Scholar 

  • Lee C-I, Kim S-W, Kim D-S, Yoon M-G (2012) Climatological trend of sea water temperature around the Antarctic Peninsula waters in the Southern Ocean. J Environ Sci 21:125–133. https://doi.org/10.5322/JES.2012.21.2.125

    Article  Google Scholar 

  • Lehahn Y, d’Ovidio F, Lévy M et al (2011) Long range transport of a quasi isolated chlorophyll patch by an Agulhas ring. Geophys Res Lett. https://doi.org/10.1029/2011GL048588

    Article  Google Scholar 

  • Martin JH, Gordon RM, Fitzwater SE (1990) Iron in Antarctic waters. Nature 345:156–158

    Article  Google Scholar 

  • Martz TR, Johnson KS, Riser SC (2008) Ocean metabolism observed with oxygen sensors on profiling floats in the South Pacific. Limnol Oceanogr 53:2094–2111. https://doi.org/10.4319/lo.2008.53.5_part_2.2094

    Article  Google Scholar 

  • Matear RJ, Hirst AC, McNeil BI (2000) Changes in dissolved oxygen in the Southern Ocean with climate change. Geochemistry, Geophysics, Geosystems 1

  • McGillicuddy DJ Jr, Robinson AR (1997) Eddy-induced nutrient supply and new production in the Sargasso Sea. Deep Sea Res Part I 44:1427–1450

    Article  Google Scholar 

  • McGillicuddy DJ Jr (2016) Mechanisms of physical-biological-biogeochemical interaction at the oceanic mesoscale. Annu Rev Mar Sci 8(1):125–159

    Article  Google Scholar 

  • Metzl N, Tilbrook B, Poisson A (1999) The annual f CO2 cycle and the air’ sea CO2 flux in the sub-Antarctic Ocean. Tellus B: Chem Phys Meteorol 51:849–861

    Article  Google Scholar 

  • MustaphaSei-IchiLihan MAST (2009) Satellite-measured seasonal variations in primary production in the scallop-farming region of the Okhotsk Sea. ICES J Mar Sci 66:1557–1569. https://doi.org/10.1093/icesjms/fsp142

    Article  Google Scholar 

  • Orsi AH, Whitworth T III, Nowlin WD Jr (1995) On the meridional extent and fronts of the Antarctic Circumpolar Current. Deep Sea Res Part I 42:641–673

    Article  Google Scholar 

  • Prakash S, Nair TMB, Bhaskar TVSU et al (2012) Oxycline variability in the central Arabian Sea: an Argo-oxygen study. J Sea Res 71:1–8

    Article  Google Scholar 

  • Prakash S, Prakash P, Ravichandran M (2013) Can oxycline depth be estimated using sea level anomaly (SLA) in the northern Indian Ocean? Remote Sensing Letters 4:1097–1106. https://doi.org/10.1080/2150704X.2013.842284

    Article  Google Scholar 

  • Prakash P, Prakash S, Ravichandran M et al (2020) Seasonal evolution of chlorophyll in the Indian sector of the Southern Ocean: analyses of Bio-Argo measurements. Deep Sea Res Part II 178:104791

    Article  Google Scholar 

  • Read JF, Pollard RT, Allen JT (2007) Sub-mesoscale structure and the development of an eddy in the Sub Antarctic front north of the Crozet Islands. Deep Sea Res Part II 54:1930–1948

    Article  Google Scholar 

  • Redfield AC (1958) The biological control of chemical factors in the environment. Am Sci 46(3):230A–221

    Google Scholar 

  • Rintoul SR, Hughes CW, Olbers D (2001) The Antarctic circumpolar current system. International Geophysics. Elsevier, Amsterdam, pp 271–273

    Google Scholar 

  • Riser SC, Johnson KS (2008) Net production of oxygen in the subtropical ocean. Nature 451:323–325. https://doi.org/10.1038/nature06441

    Article  Google Scholar 

  • Sabu P, George JV, Anilkumar N et al (2015) Observations of water mass modification by mesoscale eddies in the subtropical frontal region of the Indian Ocean sector of Southern Ocean. Deep Sea Res Part II 118:152–161

    Article  Google Scholar 

  • Sallée J-B, Llort J, Tagliabue A, Lévy M (2015) Characterization of distinct bloom phenology regimes in the Southern Ocean. ICES J Mar Sci 72:1985–1998

    Article  Google Scholar 

  • Sarma V, Udaya Bhaskar TVS (2018) Ventilation of oxygen to oxygen minimum zone due to anticyclonic eddies in the Bay of Bengal. J Geophys Res Biogeosci 123:2145–2153

    Article  Google Scholar 

  • Schmechtig C, Claustre H, Poteau A, D’Ortenzio F (2014) Bio-Argo quality control manual for Chlorophyll-A concentration. Version 1.0, December 17th 2014.

  • Schmidtko S, Stramma L, Visbeck M (2017) Decline in global oceanic oxygen content during the past five decades. Nature 542:335–339

    Article  Google Scholar 

  • Seibel BA (2011) Critical oxygen levels and metabolic suppression in oceanic oxygen minimum zones. J Exp Biol 214:326–336

    Article  Google Scholar 

  • Shadwick EH, Trull TW, Tilbrook B et al (2015) Seasonality of biological and physical controls on surface ocean CO2 from hourly observations at the Southern Ocean time series site south of Australia. Global Biogeochem Cycles 29:223–238

    Article  Google Scholar 

  • Takeshita Y, Martz TR, Johnson KS et al (2013) A climatology-based quality control procedure for profiling float oxygen data. J Geophys Res: Oceans 118:5640–5650

    Article  Google Scholar 

  • Thierry V, Bittig H Argo-Team (2016). Argo Quality Control Manual for Dissolved Oxygen Concentration

  • Thomalla SJ, Fauchereau N, Swart S, Monteiro PMS (2011a) Regional scale characteristics of the seasonal cycle of chlorophyll in the Southern Ocean. Biogeosciences 8:2849–2866. https://doi.org/10.5194/bg-8-2849-2011

    Article  Google Scholar 

  • Udaya Bhaskar TVS, Pattabhi Rama Rao E, Venkat Seshu R, Devender R (2012) A note on three way quality control of Argo temperature and salinity profiles - a semi-automated approach at INCOIS. Int J Earth Sci Eng 5:1510–1514

    Google Scholar 

  • Weiss RF (1970) The solubility of nitrogen, oxygen and argon in water and seawater. Deep Sea Res Oceanogr Abstr 17(4):721–735

    Article  Google Scholar 

  • Wong A, Keeley R, Carval T, The Argo Data Management Team (2015) Argo Quality Control Manual for CTD and Trajectory Data, v3 2

  • Zhang W, Xue H, Chai F, Ni Q (2015) Dynamical processes within an anticyclonic eddy revealed from Argo floats. Geophys Res Lett 42:2342–2350

    Article  Google Scholar 

Download references

Acknowledgements

This is NCPOR contribution no. J-14/2022-23.  Argo data were collected and made freely available by the international Argo project and the national programs that contribute to it (http://www.argo.ucsd.edu, http://argo.jcommops.org). Argo is a pilot program of the Global Ocean Observing System.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Prince Prakash.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Prakash, P., Prakash, S., Ravichandran, M. et al. On anomalously high sub-surface dissolved oxygen in the Indian sector of the Southern Ocean. J Oceanogr (2022). https://doi.org/10.1007/s10872-022-00644-7

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10872-022-00644-7

Keywords

  • Polar ocean
  • Southern ocean
  • Dissolved oxygen
  • Chlorophyll
  • Eddies