Role of tide-induced vertical mixing in the deep Pacific Ocean circulation

Abstract

We investigate the control mechanisms of the deep Pacific Ocean circulation by introducing updated methods for parameterizing tidal mixing. The column-integrated rates of dissipation in near- and far-fields are derived from the tidal energy conversion and dissipation rates estimated by a high resolution tide model. In the calculation of the far-field mixing, its dependency on stratification is taken into account based on theoretical and observational knowledge. Unlike previous studies that did not take the stratification dependence into account, the far-field mixing does not function to significantly enhance the deep Pacific Ocean circulation. The deep Pacific Ocean circulation is also found to be insensitive to the decay scale height of the near-field mixing. However, these factors affect the reproducibility of the radiocarbon distribution, especially its minimum in the upper deep layer, through their influence on the mixing with the shallower layers.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

References

  1. Cox MD (1987) Isopycnal diffusion in a z-coordinate ocean model. Ocean Model 74:1–5

    Google Scholar 

  2. Davies JH (2013) Global map of solid Earth surface heat flow. Geochem Geophys Geosys 14(10):4608–4622. https://doi.org/10.1002/ggge.20271

    Article  Google Scholar 

  3. de Lavergne C, Madec G, Sommer JL, Nurser AJG, Naveira-Garabato AC (2016) On the consumption of antarctic bottom water in the abyssal ocean. J Phys Oceanogr 46:635–661. https://doi.org/10.1175/JPO-D-14-0201.1

    Article  Google Scholar 

  4. de Lavergne C, Madec G, Roquet F, Holmes RM, McDougall TJ (2017) Abyssal ocean overturning shaped by seafloor distribution. Nature 551:181–186. https://doi.org/10.1038/nature24472

    Article  Google Scholar 

  5. de Lavergne C, Vic C, Madec G, Roquet F, Waterhouse AF, Whalen CB, Cuypers Y, Bouruet-Aubertot P, Ferron B, Hibiya T (2020) A parameterization of local and remote tidal mixing. J Adv Model Earth Sys. https://doi.org/10.1029/2020MS002065

    Article  Google Scholar 

  6. Decloedt T, Luther DS (2012) Spatially heterogeneous diapycnal mixing in the abyssal ocean: a comparison of two parameterizations to observations. J Geophys Res 117:C11025. https://doi.org/10.1029/2012JC008304

    Article  Google Scholar 

  7. Eden C, Olbers D (2014) An energy compartment model for propagation, nonlinear interaction, and dissipation of internal gravity waves. J Phys Oceanogr 44(8):2093–2106. https://doi.org/10.1175/JPO-D-13-0224.1

    Article  Google Scholar 

  8. Egbert GD, Ray RD (2000) Significant dissipation of tidal energy in the deep ocean inferred from satellite altimeter data. Nature 93(1993):775–778

    Article  Google Scholar 

  9. Egbert GD, Ray RD (2001) Estimates of M2 tidal energy dissipation from TOPEX/Poseidon altimeter data. J Geophys Res 106(C10):22475–22502

    Article  Google Scholar 

  10. Emile-Geay J, Madec G (2009) Geothermal heating, diapycnal mixing and the abyssal circulation. Ocean Sci 5:203–217

    Article  Google Scholar 

  11. Furuichi N, Hibiya T, Niwa Y (2008) Model-predicted distribution of wind-induced internal wave energy in the world’s oceans. J Geophys Res 113(6):1–13. https://doi.org/10.1029/2008JC004768

    Article  Google Scholar 

  12. Gargett AE, Holloway G (1984) Dissipation and diffusion by internal wave breaking. J Mar Res 42:15–27. https://doi.org/10.1357/002224084788506158

    Article  Google Scholar 

  13. Gent PR, Willebrand J, McDougall TJ, McWilliams JC (1995) Parameterizing eddy-induced tracer transports in ocean circulation models. J Phys Oceanogr 25:463–474

    Article  Google Scholar 

  14. Gibson JK, Kallberg P, Uppala S, Hernandez A, Nomura A, Serrano E (1997) ERA Description. ERA Proj Rep 1, pp. 72, Eur Cent for Medium-Range Weather Forecasts, Reading, England

  15. Goto Y, Yasuda I, Nagasawa M, Kouketsu S, Nakano T, Estimation of Basin-scale turbulence distribution in the North Pacific Ocean using CTD-attached thermistor measurements. Scientific Reports, in revision

  16. Gregg MC, Sanford TB (1988) The dependence of turbulent dissipation on stratification in a diffusively stable thermocline. J Geophys Res 93(C10):12381–12392. https://doi.org/10.1029/jc093ic10p12381

    Article  Google Scholar 

  17. Griffies SM, Danabasoglu G, Durack PJ, Adcroft AJ, Balaji V, Böning CW, Chassignet EP, Curchitser E, Deshayes J, Drange H, Fox-kemper B, Gleckler PJ, Gregory JM, Haak H, Hallberg RW, Heimbach P, Hewitt HT, Holland DM, Ilyina T, Jungclaus JH, Komuro Y, Krasting JP, Large WG, Marsland SJ, Masina S, McDougall TJ, Nurser G, Orr JC, Pirani A, Qiao F, Stouffer RJ, Taylor KE, Treguier AM, Tsujino H, Uotila P, Valdivieso M, Wang Q, Winton M, Yeager SG (2016) OMIP contribution to CMIP6: experimental and diagnostic protocol for the physical component of the Ocean Model Intercomparison Project. Geosci Model Dev. https://doi.org/10.5194/gmd-9-3231-2016

  18. Hasumi H, Suginohara N (1999) Effects of locally enhanced vertical diffusivity over rough bathymetry on the world ocean circulation. J Geophys Res 104(C10):367–374

    Google Scholar 

  19. Henyey FS, Wright J, Flatte SM (1986) Energy and action flow through the internal wave field: an eikonal approach. J Geophys Res 91(C7):8487–8495

    Article  Google Scholar 

  20. Heuze C, Heywood KJ, Stevens DP, Ridley JK (2015) Changes in global ocean bottom properties and volume transports in CMIP5 models under climate change scenarios. J Climate 28:2917–2944. https://doi.org/10.1175/JCLI-D-14-00381.1

    Article  Google Scholar 

  21. Hibiya T, Ijichi T, Robertson R (2017) The impacts of ocean bottom roughness and tidal flow amplitude on abyssal mixing. J Geophys Res 122:5645–5651. https://doi.org/10.1002/2016JC012564

    Article  Google Scholar 

  22. Hofmann M, Morales Maqueda M (2009) Geothermal heat flux and its influence on the oceanic abyssal circulation and radiocarbon distribution. Geophys Res Lett 36:L03603. https://doi.org/10.1029/2008GL036078

    Article  Google Scholar 

  23. Holzer M, Primeau FW (2006) The diffusive ocean conveyor. Geophys Res Lett 33:L14618. https://doi.org/10.1029/2006GL026232

    Article  Google Scholar 

  24. Ishikawa I, Ishizaki H (2009) Importance of eddy representation for modeling the intermediate salinity minimum in the North Pacific: comparison between eddy-resolving and eddy-permitting models. J Oceanogr 65(3):407–426. https://doi.org/10.1007/s10872-009-0036-6

    Article  Google Scholar 

  25. Kawasaki T, Hasumi H (2010) Role of localized mixing around the Kuril Straits in the Pacific thermohaline circulation. J Geophys Res. https://doi.org/10.1029/2010JC006130

    Article  Google Scholar 

  26. Kelly SM, Jones NL, Nash JD, Waterhouse AF (2013) The geography of semidiurnal mode-1 internal-tide energy loss. Geophys Res Lett 40:4689–4693

    Article  Google Scholar 

  27. Key RM, Kozyr A, Sabine CL, Lee K, Wanninkhof R, Bullister JL, Feely RA, Millero FJ, Mordy C, Peng TH (2004) A global ocean carbon climatology: results from Global Data Analysis Project (GLODAP). Global Biogeochem Cycles 18:1–23. https://doi.org/10.1029/2004GB002247

    Article  Google Scholar 

  28. Kouketsu S, Doi T, Kawano T, Masuda S, Sugiura N, Sasaki Y, Toyoda T, Igarashi H, Kawai Y, Katsumata K, Uchida H, Fukasawa M, Awaji T (2011) Deep ocean heat content changes estimated from observation and reanalysis product and their influence on sea level change. J Geophys Res 116:1–16. https://doi.org/10.1029/2010JC006464

    Article  Google Scholar 

  29. Kunze E (2017) Internal-wave-driven mixing: global geography and budgets. J Phys Oceanogr 47(6):1325–1345. https://doi.org/10.1175/JPO-D-16-0141.1

    Article  Google Scholar 

  30. Kunze E, Firing E, Hummon JM, Chereskin TK, Thurnherr AM (2006) Global abyssal mixing inferred from lowered ADCP shear and CTD strain profiles. J Phys Oceanogr 36(8):1553–1576. https://doi.org/10.1175/JPO2926.1

    Article  Google Scholar 

  31. Lefauve A, Muller C, Melet A (2015) A three-dimensional map of tidal dissipation over abyssal hills. J Geophys Res 120:4760–4777. https://doi.org/10.1002/2014JC010598

    Article  Google Scholar 

  32. Lumpkin R, Speer K (2007) Global ocean meridional overturning. J Phys Oceanogr 37:2550–2562. https://doi.org/10.1175/JPO3130.1

    Article  Google Scholar 

  33. Melet A, Hallberg R, Legg S, Polzin K (2013) Sensitivity of the ocean state to the vertical distribution of internal-tide-driven mixing. J Phys Oceanogr 43(3):602–615. https://doi.org/10.1175/JPO-D-12-055.1

    Article  Google Scholar 

  34. Melet A, Legg S, Hallberg R (2016) Climatic impacts of parameterized local and remote tidal mixing. J Climate 29(10):3473–3500. https://doi.org/10.1175/JCLI-D-15-0153.1

    Article  Google Scholar 

  35. Moum JN, Caldwell DR, Nash JD, Guderson GD (2002) Observations of boundary mixing over the continental slope. J Phys Oceanogr 32(7):2113–2130

    Article  Google Scholar 

  36. Munk WH, Wunsch C (1998) Abyssal recipes II: Energetics of tidal and wind mixing. Deep Sea Res I 45:1977–2010

    Article  Google Scholar 

  37. Nash JD, Kunze E, Toole JM, Schmitt RW (2004) Internal tide reflection and turbulent mixing on the continental slope. J Phys Oceanogr 34(5):1117–1134

    Article  Google Scholar 

  38. Niwa Y, Hibiya T (2011) Estimation of baroclinic tide energy available for deep ocean mixing based on three-dimensional global numerical simulations. J Oceanogr 67(4):493–502. https://doi.org/10.1007/s10872-011-0052-1

    Article  Google Scholar 

  39. Niwa Y, Hibiya T (2014) Generation of baroclinic tide energy in a global three-dimensional numerical model with different spatial grid resolutions. Ocean Model 80:59–73. https://doi.org/10.1016/j.ocemod.2014.05.003

    Article  Google Scholar 

  40. Noh Y, Kim HJ (1999) Simulations of temperature and turbulence structure of the oceanic boundary layer with the improved near-surface process. J Geophys Res 104(C7):15621–15634

    Article  Google Scholar 

  41. Oka A, Niwa Y (2013) Pacific deep circulation and ventilation controlled by tidal mixing away from the sea bottom. Nature Comm. https://doi.org/10.1038/ncomms3419

    Article  Google Scholar 

  42. Osborn TR (1980) Estimates of the local rate of vertical diffusion from dissipation measurements. J Phys Oceanogr 10:83–89

    Article  Google Scholar 

  43. Polzin KL (2009) An abyssal recipe. Ocean Model 30:298–309. https://doi.org/10.1016/j.ocemod.2009.07.006

    Article  Google Scholar 

  44. Polzin KL, Toole JM, Ledwell JR, Schmitt RW (1997) Spatial variability of turbulent mixing in the abyssal ocean. Science 276:93–96

    Article  Google Scholar 

  45. Prather MJ (1986) Numerical advection by conservation of second-order moments. J Geophys Res 91(D6):6671–6681

    Article  Google Scholar 

  46. Roemmich D, Hautala S, Rudnick DL (1996) Northward abyssal transport through the Samoan passage and adjacent regions to diffusivities. J Geophys Res 101(C6):14039–14055

    Article  Google Scholar 

  47. Röske F (2001) An atlas of surface fluxes based on the ECMWF Re-Analysis—a climatological dataset to force global ocean general circulation models. Max-Planck Institute for Meteorology Report 323

  48. Rudnick DL (1997) Direct velocity measurements in the Samoan Passage. J Geophys Res 102(C2):3293–3302

    Article  Google Scholar 

  49. Schmitz WJ (1995) On the interbasin-scale thermohaline circulation. Rev Geophysics 33(2):151–173

    Article  Google Scholar 

  50. Simmons HL, Jayne SR, St. Laurent LC, Weaver AJ (2004) Tidally driven mixing in a numerical model of the ocean general circulation. Ocean Model 6:245–263. https://doi.org/10.1016/S1463-5003(03)00011-8

    Article  Google Scholar 

  51. Sloyan BM, Wijffels SE, Tilbrook B, Katsumata K, Murata A, Macdonald AM (2013) Deep ocean changes near the western boundary of the South Pacific Ocean. J Phys Oceanogr 43:2132–2141. https://doi.org/10.1175/JPO-D-12-0182.1

    Article  Google Scholar 

  52. St. Laurent LC, Schmitt RW (1999) The contribution of salt fingers to vertical mixing in the north Atlantic tracer release experiment. J Phys Oceanogr 29(6):1404–1424. https://doi.org/10.1175/1520-0485(1999)029%3c1404:TCOSFT%3e2.0.CO;2

    Article  Google Scholar 

  53. St. Laurent LC, Toole JM, Schmitt RW (2001) Buoyancy forcing by turbulence above rough topography in the Abyssal Brazil Basin. J Phys Oceanogr 31:3476–3495

    Article  Google Scholar 

  54. St. Laurent LC, Simmons HL, Jayne SR (2002) Estimating tidally driven mixing in the deep ocean. Geophys Res Lett 29(23):2106. https://doi.org/10.1029/2002GL015633

    Article  Google Scholar 

  55. Steele M, Morley R, Ermold W (2001) PHC: a global ocean hydrography with a high-quality Arctic Ocean. J Climate 14(9):2079–2087. https://doi.org/10.1175/1520-0442(2001)014%3c2079:PAGOHW%3e2.0.CO;2

    Article  Google Scholar 

  56. Talley LD (2013) Closure of the global overturning circulation through the Indian, Pacific, and Southern Oceans. Oceanogr 26(1):80–97. https://doi.org/10.5670/oceanog.2013.07

    Article  Google Scholar 

  57. Tandon NF, Saenko GA, Cane MA, Kushner PJ (2020) Interannual variability of the global meridional overturning circulation dominated by Pacific Variability. J Phys Oceanogr 50:559–574. https://doi.org/10.1175/JPO-D-19-0129.1

    Article  Google Scholar 

  58. Tatebe H, Ogura T, Nitta T, Komuro Y, Ogochi K, Takemura T, Sudo K, Sekiguchi M, Abe M, Saito F, Chikira M, Watanabe S, Mori M, Hirota N, Kawatani Y, Mochizuki T, Yoshimura K, Tanaka K, O’ishi R, Yamazaki D, Suzuki T, Kurogi M, Kataoka T, Watanabe M, Kimoto M (2019) Description and basic evaluation of simulated mean state, internal variability, and climate sensitivity in MIROC6. Geosci Model Dev. https://doi.org/10.5194/gmd-12-2727-2019

  59. Urakawa LS, Hasumi H (2009) A remote effect of geothermal heat on the global thermohaline circulation. J Geophys Res 114:C07016. https://doi.org/10.1029/2008JC005192

    Article  Google Scholar 

  60. Vic C, Garabato ACN, Green JAM, Waterhouse AF, Zhao Z, Melet A, de Lavergne C, Buijsman MC, Stephenson GR (2019) Deep-ocean mixing driven by small-scale internal tides. Nature Comm. https://doi.org/10.1038/s41467-019-10149-5

    Article  Google Scholar 

  61. Voet G, Alford MH, Girton JB, Carter GS, Mickett JB, Klymak JM (2016) Warming and weakening of the abyssal flow through samoan passage. J Phys Oceanogr 46(8):2389–2401. https://doi.org/10.1175/JPO-D-16-0063.1

    Article  Google Scholar 

  62. Voldoire A, Saint-Martin D, Sénési S, Decharme B, Alias A, Chevallier M, Colin J, Guérémy JF, Michou M, Moine MP, Nabat P, Roehrig R, Salas Mélia D, Séférian R, Valcke S, Beau I, Belamari S, Berthet S, Cassou C, Cattiaux J, Deshayes J, Douville H, Ethé C, Franchistéguy L, Geoffroy O, Lévy C, Madec G, Meurdesoif Y, Msadek R, Ribes A, Sanchez-Gomez E, Terray L, Waldman R (2019) Evaluation of CMIP6 DECK experiments with CNRM-CM6-1. J Adv Model Earth Sys 11:2177–2213. https://doi.org/10.1029/2019MS001683

    Article  Google Scholar 

  63. Waterhouse AF, Mackinnon JA, Nash JD, Alford MH, Kunze E, Simmons HL, Polzion KL, St. Laurent LC, Sun OM, Pinkel R, Talley LD, Whalen CB, Huussen TN, Carter GS, Fer I, Waterman S, Naveira Garabato AC, Sanford TB, Lee CM (2014) Global patterns of diapycnal mixing from measurements of the turbulent dissipation rate. J Phys Oceanogr 44(7):1854–1872. https://doi.org/10.1175/JPO-D-13-0104.1

    Article  Google Scholar 

  64. Whalen CB, Mackinnon JA, Talley LD (2018) Large-scale impacts of the mesoscale environment on mixing from wind-driven internal waves. Nat Geosci 11:842–847. https://doi.org/10.1038/s41561-018-0213-6

    Article  Google Scholar 

Download references

Acknowledgements

This work is supported by the JSPS MEXT KAKENHI Grant Number JPH05825. This research was conducted using the Fujitsu PRIMERGY CX600M1/CX1640M1 (Oakforest-PACS) in the Information Technology Center, The University of Tokyo. All figures are drawn using the libraries of the Python (e.g., NumPy, Matplotlib).

Author information

Affiliations

Authors

Corresponding author

Correspondence to Takao Kawasaki.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Kawasaki, T., Hasumi, H. & Tanaka, Y. Role of tide-induced vertical mixing in the deep Pacific Ocean circulation. J Oceanogr 77, 173–184 (2021). https://doi.org/10.1007/s10872-020-00584-0

Download citation

Keywords

  • Tide-induced vertical mixing
  • Deep pacific ocean circulation
  • Ocean modeling