Distribution and stoichiometry of Al, Mn, Fe, Co, Ni, Cu, Zn, Cd, and Pb in the East China Sea

Abstract

The dissolved (d) and total dissolvable (td) trace metals were determined in seawater samples collected from the East China Sea (ECS). Labile particulate (lp) species was calculated as td minus d, and the sectional and vertical distributions of d and lp trace metals were evaluated. The surface concentrations of dAl, dCo, dNi, dCu, and dPb were higher in the continental shelf region than in the Kuroshio region. lpAl and lpFe were the dominant species below a depth of 400 m, and a strong positive correlation was observed between them in the Kuroshio region. The enrichment factor (EF) against crustal abundance was calculated for the purpose of estimating the origin of dMs in the ECS. The EF(dFe) was close to unity. These results suggest that both lpFe and dFe are dominated by crustal sources. The other elements had high EF, indicating significant contributions from other sources. EF(dPb) was close to the enrichment factor in aerosol, suggesting atmospheric input from anthropogenic sources. The dM/P ratios were calculated to investigate the validity of the extended Redfield ratio in the ECS. The Mn/P, Co/P, Cu/P, Zn/P, and Cd/P ratios in shallow water (< 200 m) were within the same order of magnitude as those in phytoplankton. In contrast, the Al/P and Fe/P ratios were, respectively, 27 and 213 times higher in phytoplankton compared to those in shallow water. These results suggest that dFe is a potential limiting factor for biological production, although it is not exhausted in surface water.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13

References

  1. Abe K (2002) Relationship between Cd and PO4 in the Subtropical Sea near the Ryukyu Islands. J Oceanogr 58:577–588

    Article  Google Scholar 

  2. Beardsley RC, Limeburner R, Yu H, Cannon GA (1985) Discharge of the Changjiang (Yangtze River) into the East China Sea. Cont Shelf Res 4:57–76

    Article  Google Scholar 

  3. Boye M, Wake BD, Lopez Garcia P, Bown J, Baker AR, Achterberg EP (2012) Distributions of dissolved trace metals (Cd, Cu, Mn, Pb, Ag) in the southeastern Atlantic and the Southern Ocean. Biogeosciences 9:3231–3246. https://doi.org/10.5194/bg-9-3231-2012

    Article  Google Scholar 

  4. Boyle EA (1988) Cadmium: chemical tracer of deep water paleoceanography. Paleoceanography 3:471–489

    Article  Google Scholar 

  5. Boyle EA, Edmond JM (1975) Copper in surface waters south of New Zealand. Nature 253:107–109

    Article  Google Scholar 

  6. Boyle EA, Sclater FR, Edmond JM (1977) The distribution of dissolved copper in the Pacific. Earth Planet Sci Lett 37(1):38–54. https://doi.org/10.1016/0012-821X(77)90144-3

    Article  Google Scholar 

  7. Bown J, Boye M, Baker A, Duvieilbourg E, Lacan F, Moigne FL, Planchon F, Speich S, Nelson DM (2011) The biogeochemical cycle of dissolved cobalt in the Atlantic and the Southern Ocean south off the coast of South Africa. Mar Chem 126:193–206. https://doi.org/10.1016/j.marchem.2011.03.008

    Article  Google Scholar 

  8. Brown MT, Lippiatt SM, Bruland KW (2010) Dissolved aluminum, particulate aluminum, and silicic acid in northern Gulf of Alaska coastal waters: glacial/riverine inputs and extreme reactivity. Mar Chem 122:160–175. https://doi.org/10.1016/j.marchem.2010.04.002

    Article  Google Scholar 

  9. Bruland KW (1980) Oceanographic distributions of cadmium, zinc, nickel, and copper in the north Pacific. Earth Planet Sci Lett 47:176–198

    Article  Google Scholar 

  10. Bruland KW, Franks RP (1983) Mn, Ni, Cu, Zn and Cd in the western North Atlantic. In: Wong CS, Boyle E, Bruland KW, Burton JD, Goldberg ED (eds) Trace metals in seawater. Plenum, New York, pp 395–415

    Google Scholar 

  11. Bruland KW, Orians KJ, Cowen JP (1994) Reactive trace metals in the stratified central North Pacific. Geochim Cosmochim Acta 58:3171–3182

    Article  Google Scholar 

  12. Buck CS, Landing WM, Resing JA, Lebon GT (2006) Aerosol iron and aluminum solubility in the northwest Pacific Ocean: results from the 2002 IOC cruise. Geochem Geophys Geosyst. https://doi.org/10.1029/2005GC000977

    Article  Google Scholar 

  13. Chang PH, Isobe A (2003) A numerical study of the Changjiang diluted water in the Yellow and East China Seas. J Geophys Res 108(C9):3299. https://doi.org/10.1029/2002JC001749

    Article  Google Scholar 

  14. Chen CA (1996) The Kuroshio intermediate water is the major source of nutrients on the East China Sea continental shelf. Oceanol Acta 19(5):523–527

    Google Scholar 

  15. Chen C, Beardsley RC, Limeburner R, Kim K (1994) Comparison of winter and summer hydrographic observations in the Yellow and East China Sea and adjacent Kuroshio during 1986. Cont Shelf Res 14:909–959

    Article  Google Scholar 

  16. Cid AP, Urushihara S, Minami T, Norisuye K, Sohrin Y (2011) Stoichiometry among bioactive trace metals in seawater on the Bering Sea shelf. J Ocenogr 67(6):747–764. https://doi.org/10.1007/s10872-011-0070-z

    Article  Google Scholar 

  17. Cid AP, Nakatsuka S, Sohrin Y (2012) Stoichiometry among bioactive trace metals in the Chukchi and Beaufort Seas. J Oceanogr 68(6):985–1001

    Article  Google Scholar 

  18. Dagg M, Benner R, Lohrenz S, Lawrence D (2004) Transformation of dissolved and particulate materials on continental shelves influenced by large river: Plume processes. Cont Shelf Res 24:833–853. https://doi.org/10.1016/j.csr.2004.02.003

    Article  Google Scholar 

  19. Danielson LG, Magnusson B, Westerlund S (1985) Cadmium, copper, iron, nickel and zinc in the north-east Atlantic Ocean. Mar Chem 17:23–41

    Article  Google Scholar 

  20. Ellwood MJ (2008) Wintertime trace metal (Zn, Cu, Ni, Cd, Pb and Co) and nutrient distributions in the Subantarctic Zone between 40–52°S; 155–160°E. Mar Chem 112:107–117. https://doi.org/10.1016/j.marchem.2008.07.008

    Article  Google Scholar 

  21. Ellwood MJ, Hunter KA (2000) The incorporation of zinc and iron into the frustule of the marine diatom Thalassiosira pseudonana. Limnol Oceanogr 45(7):1517–1524

    Article  Google Scholar 

  22. Ezoe M, Ishita T, Kinugasa M, Lai X, Norisuye K, Sohrin Y (2004) Distributions of dissolved and acid-dissolved bioactive trace metals in the North Pacific. Geochem J 38(6):535–550

    Article  Google Scholar 

  23. Fitzwater SE, Johnson KS, Gordon RM, Coale KH, Smith WO (2000) Trace metal concentrations in the Ross Sea and their relationship with nutrients and phytoplankton growth. Deep Sea Res Part II: Top Stud Oceanogr 47(15–16):3159–3179

    Article  Google Scholar 

  24. Gehlen M, Beck L, Calas G, Flank AM, Van Bennekom AJ, Van Beusekom JEE (2002) Unraveling the atomic structure of biogenic silica: evidence of the structural association of Al and Si in diatom frustules. Geochim Cosmochim Acta 66(9):1601–1609

    Article  Google Scholar 

  25. Gledhill M, van den Berg CMG (1994) Determination of complexation of iron(III) with natural organic complexing ligands in seawater using cathodic stripping voltammetry. Mar Chem 47(1):41–54. https://doi.org/10.1016/0304-4203(94)90012-4

    Article  Google Scholar 

  26. Guo L, Chen Y, Wang F, Meng X, Xu Z, Zhuang G (2014) Effects of Asian dust on the atmosphere input of trace elements to the East China Sea. Mar Chem 163:19–27. https://doi.org/10.1016/j.marchem.2014.04.003

    Article  Google Scholar 

  27. Hall IR, Measures CI (1998) The distribution of Al in the IOC stations of the North Atlantic and Norwegian Sea between 52° and 65° North. Mar Chem 61(1–2):69–85. https://doi.org/10.1016/S0304-4203(98)00008-5

    Article  Google Scholar 

  28. Heller MI, Croot PL (2015) Copper speciation and distribution in the Atlantic sector of the southern ocean. Mar Chem 173(20):253–268. https://doi.org/10.1016/j.marchem.2014.09.017

    Article  Google Scholar 

  29. Hernandez-Candelario IDG, Lares ML, Camacho-Ibar VF, Linacre L, Gutierrez-Mejia E, Perez-Brunius P (2019) Dissolved cadmium and its relation to phosphate in the deep region of the Gulf of Mexico. J Mar Syst 193:27–45

    Article  Google Scholar 

  30. Ho TY (2013) Nickel limitation of nitrogen fixation in Trichodesmium. Limnol Oceanogr 58(1):112–120

    Article  Google Scholar 

  31. Ho TY, Wen LS, You CF, Lee DC (2007) The trace-metal composition of size-fractionated plankton in the South China Sea: Biotic versus abiotic sources. Limnol Ocenogr 52(5):1776–1788

    Article  Google Scholar 

  32. Ho TY, You CF, Chou WC, Pai SC, Wen LS, Sheu DD (2009) Cadmium and phosphorus cycling in the water column of the South China Sea: the roles of biotic and abiotic particles. Mar Chem 115:125–133. https://doi.org/10.1016/j.marchem.2009.07.005

    Article  Google Scholar 

  33. Hsu SC, Lin FJ, Jeng WL, Chung YC, Shaw LM (2003a) Hydrothermal signatures in the southern Okinawa trough detected by the sequential extraction of settling particles. Mar Chem 84(1–2):49–66

    Article  Google Scholar 

  34. Hsu SC, Lin FJ, Jeng WL, Tang TY (2003b) Spatial distribution of cadmium over a cyclonic eddy in the southern East China Sea. J Mar Syst 39(3–4):153–166. https://doi.org/10.1016/S0924-7963(03)00028-9

    Article  Google Scholar 

  35. Hsu SC, Liu SC, Arimoto R, Liu TH, Huang YT, Tsai F, Lin FJ, Kao SJ (2009) Dust deposition to the East China Sea and its biogeochemical implications. J Geophy Res 114:D15304. https://doi.org/10.1029/2008JD011223,2009

    Article  Google Scholar 

  36. Hsu SC, Wong GTF, Gong GC, Shiah FK, Huang YT, Kao SJ, Tsai F, Lung SC, Lin FJ, Lin II, Hung CC, Tseng CM (2010) Source, solubility, and dry deposition of aerosol trace elements over the East China Sea. Mar Chem 120(1–4):116–127. https://doi.org/10.1016/j.marchem.2008.10.003

    Article  Google Scholar 

  37. Hunter KA, Ho FWT (1991) Phosphorus-cadmium cycling in the northeast Tasman Sea, 35–40°S. Mar Chem 33(3):279–298. https://doi.org/10.1016/0304-4203(91)90072-5

    Article  Google Scholar 

  38. Hydes DJ (1983) Distribution of aluminum in waters of the North East Atlantic 25° N to 35° N. Geochim Cosmochim Acta 47:967–983

    Article  Google Scholar 

  39. Hydes DJ, de Lange GJ, de Baar HJW (1988) Dissolved aluminum in the Mediterranean. Geochim Cosmochim Acta 52:2107–2114

    Article  Google Scholar 

  40. Ibisanmi E, Sander SG, Boyd PW, Bowie AR, Hunter KA (2011) Vertical distributions of iron-(III) complexing ligands in the Southern Ocean. Deep Sea Res II Top Stud Oceanogr 58(21):2113–2125

    Article  Google Scholar 

  41. Ichikawa H, Beardsley RC (2002) The current system in the yellow and East China Seas. J Ocenogr 58:77–92

    Article  Google Scholar 

  42. Jacquot JE, Moffett JW (2015) Copper distribution and speciation across the International GEOTRACES section GA03. Deep-Sea Res II 116:187–207. https://doi.org/10.1016/j.dsr2.2014.11.013

    Article  Google Scholar 

  43. Janssen DJ, Cullen JT (2015) Decoupling of zinc and silicic acid in the subarctic northeast Pacific interior. Mar Chem 177:124–133

    Article  Google Scholar 

  44. Johns WE, Lee TN, Liu CT, Zhang D (1995) PCM-1 array monitors Kuroshio transport. WOCE Notes 7(3):10–13

    Google Scholar 

  45. Kim T, Obata H, Nishioka J, Gamo T (2017) Distribution of dissolved zinc in the western and central subarctic North Pacific. Global Biogeochem Cycles 31(9):1454–1468

    Article  Google Scholar 

  46. Klinkhammer GP, Bender ML (1980) The distribution of manganese in the Pacific Ocean. Earth Planet Sci Lett 46:361–384

    Article  Google Scholar 

  47. Kondo Y, Takeda S, Furuya K (2012) Distinct trends in dissolved Fe speciation between shallow and deep waters in the Pacific Ocean. Mar Chem 134(20):18–28. https://doi.org/10.1016/j.marchem.2012.03.002

    Article  Google Scholar 

  48. Kramer J, Laan P, Sarthou G, Timmermans KR, Baar HJW (2004) Distribution of dissolved aluminum in the high atmospheric input region of the subtropical waters of the North Atlantic Ocean. Mar Chem 88(3–4):85–101. https://doi.org/10.1016/j.marchem.2004.03.009

    Article  Google Scholar 

  49. Kraepiel AML, Chiffoleau JF, Martin JM, Morel FMM (1997) Geochemistry of trace metals in the Gironde estuary. Geochim Cosmochim Acta 61:1421–1436

    Article  Google Scholar 

  50. Landing WM, Bruland KW (1980) Manganese in the North Pacific. Earth Planet Sci Lett 49:45–56

    Article  Google Scholar 

  51. Landing WM, Bruland KW (1987) The contrasting biogeochemistry of iron and manganese in the Pacific Ocean. Geochim Cosmochim Acta 51:29–43

    Article  Google Scholar 

  52. Li Y, Yang R, Zhang A, Wang S (2014) The distribution of dissolved lead in the coastal waters of the East China Sea. Mar Poll Bull 85(2):700–709. https://doi.org/10.1016/j.marpolbul.2014.02.010

    Article  Google Scholar 

  53. Lin FJ, Hsu SC, Jeng WL (2000) Lead in the southern East China Sea. Mar Environ Res 49(4):329–342. https://doi.org/10.1016/S0141-1136(99)00076-8

    Article  Google Scholar 

  54. Liu SM, Zhang J, Chen HT, Wu Y, Xiong H, Zhang ZF (2003) Nutrients in the Changjiang and its tributaries. Biogeochemistry 62:1–18. https://doi.org/10.1023/A:1021162214304

    Article  Google Scholar 

  55. Maldonado MT, Allen AE, Chong JS, Lin K, Leus D, Karpenko N, Harris SL (2006) Copper-dependent iron transport in coastal and oceanic diatoms. Limnol Oceanogr 51(4):1729–1743

    Article  Google Scholar 

  56. Martin JH, Gordon RM (1988) North Pacific iron distributions in relation to phytoplankton productivity. Deep Sea Res 35:177–196

    Article  Google Scholar 

  57. Martin JH, Gordon RM, Fitzwater SE (1990) Iron in Antarctic waters. Nature 345(6271):156–158

    Article  Google Scholar 

  58. Martin JH, Fitzwater SE, Gordon RM, Hunter CN, Tanner SJ (1993) Iron, primary production and carbon-nitrogen flux studies during the JGOFS North Atlantic bloom experiment. Deep Sea Res Part II 40:115–134

    Article  Google Scholar 

  59. Martin JH, Gordon RM, Fitzwater SE, Broenkow WW (1989) VERTEX: phytoplankton/iron studies in the Gulf of Alaska. Deep-Sea Res 36:649–680

    Article  Google Scholar 

  60. Measures CI, Edmond JM (1988) Aluminum as a tracer of the deep outflow from the Mediterranean. J Geophys Res 93:591–595

    Article  Google Scholar 

  61. Measures CI, Vink S (1999) Seasonal variations in the distribution of Fe and Al in the surface waters of the Arabian Sea. Deep-Sea Res II 46:1597–1622

    Article  Google Scholar 

  62. Measures CI, Edmond JM, Jickells TD (1986) Aluminum in the northwest Atlantic. Geochim Cosmochim Acta 50:1423–1429

    Article  Google Scholar 

  63. Middag R, de Baar HJW, Laan P, Cai PH, Ooijen JC (2011) Dissolved manganese in the Atlantic sector of the Southern Ocean. Deep-Sea Res II 58:2661–2677

    Article  Google Scholar 

  64. Middag R, de Baar HJW, Bruland KW, van Heuven SMAC (2020) The distribution of nickel in the West-Atlantic Ocean, its relationship with phosphate and a comparison to cadmium and zinc. Front Mar Sci 7:105

    Article  Google Scholar 

  65. Minami T, Konagaya W, Zheng L, Takano S, Sasaki M, Murata R, Nakaguchi Y, Sohrin Y (2015) An off-line automated preconcentration system with ethylenediamine-triacetate chelating resin for the determination of trace metals in seawater by high-resolution inductively coupled plasma mass spectrometry. Anal Chim Acta 854:183–190

    Article  Google Scholar 

  66. Moffett JW, Ho J (1996) Oxidation of cobalt and manganese in seawater via a common microbially catalyzed pathway. Geochim Cosmochim Acta 60:3415–3424

    Article  Google Scholar 

  67. Morel FMM, Price NM (2003) The biogeochemical cycles of trace metals in the oceans. Science 300:944–947

    Article  Google Scholar 

  68. Morel FMM, Milligan AJ, Saito MA (2003) Marine bioinorganic chemistry: the role of trace metals in the oceanic cycles of major nutrients. In: Elderfield H (ed) The oceans and marine geochemistry. Treatise on geochemistry. Elsevier, Amsterdam, pp 113–143

    Google Scholar 

  69. Morris AW, Howland RJM, Bale AJ (1986) Dissolved aluminum in the Tamar estuary, southeast England. Geochim Cosmochim Acta 50:189–197

    Article  Google Scholar 

  70. Nitani H (1972) Beginning of the Kuroshio. In: Stommel H, Yoshida K (eds) Kuroshio, physical aspects of the Japan current. University of Washington Press, Seattle, pp 129–163

    Google Scholar 

  71. Nolting RF, de Baar HJW (1994) Behaviour of nickel, copper, zinc and cadmium in the upper 300m of a transect in the Southern Ocean (57–62°S, 49°W). Mar Chem 45:225–242. https://doi.org/10.1016/0304-4203(94)90006-X

    Article  Google Scholar 

  72. Norisuye K, Ezoe M, Nakatsuka S, Umetani S, Sohrin Y (2007) Distribution of bioactive trace metals (Fe Co, Ni, Cu, Zn and Cd) in the Sulu Sea and its adjacent seas. Deep-sea Res II 54:14–37

    Article  Google Scholar 

  73. Nozaki Y, Kasemsupaya V, Tsubota H (1989) Mean residence time of the shelf water in the East China and the Yellow Seas determined by 228Ra/226Ra measurements. Geophys Res Lett 16(11):1297–1300. https://doi.org/10.1029/GL016i011p01297

    Article  Google Scholar 

  74. Obata H, Nozaki Y, Alibo DS, Yamamoto Y (2004) Dissolved Al, In and Ce in the eastern Indian Ocean and the Southeast Asian Seas in comparison with the radionuclides 210Pb and 210Po. Geochim Cosmochim Acta 68:1035–1048

    Article  Google Scholar 

  75. Orians IJ, Bruland KW (1986) The biogeochemistry of aluminum in the Pacific Ocean. Earth Planet Sci Lett 78:397–410

    Article  Google Scholar 

  76. Öztürk M, Bizsel N, Steinnes E (2003) Iron speciation in eutrophic and oligotrophic Mediterranean coastal waters; impact of phytoplankton and protozoan blooms on iron distribution. Mar Chem 81(1):19–36. https://doi.org/10.1016/S0304-4203(02)00137-8

    Article  Google Scholar 

  77. Peers G, Price NM (2006) Copper-containing plastocyanin used for electron transport by an oceanic diatom. Nature 441(7091):341–344

    Article  Google Scholar 

  78. Rahn KA (1976) Silicon and aluminum in atmospheric aerosols: crust-air fractionation? Atmos Envirom 10:597–601

    Article  Google Scholar 

  79. Redfield AC, Ketchum BH, Richards FA (1963) The influence of organisms on the composition of sea-water. In: Hill MN (ed) The sea, vol 2. Wiley, Hoboken, pp 26–77

    Google Scholar 

  80. Ren JL, Zhang J, Li JB, Yu XY, Liu SM, Zhang ER (2006) Dissolved aluminum in the Yellow Sea and East China Sea—Al as a tracer of Changjiang (Yangtze River) discharge and Kuroshio incursion. Estuar Coast Shelf Sci 68:165–174. https://doi.org/10.1016/j.ecss.2006.02.004

    Article  Google Scholar 

  81. Roshan S, Wu J (2015) The distribution of dissolved copper in the tropical-subtropical north Atlantic across the GEOTRACES GA03 transect. Mar Chem 176:189–198. https://doi.org/10.1016/j.marchem.2015.09.006

    Article  Google Scholar 

  82. Rue EL, Bruland KW (1995) Complexation of iron(III) by natural organic ligands in the Central North Pacific as determined by a new competitive ligand equilibration/adsorptive cathodic stripping voltammetric method. Mar Chem 50(1):117–138. https://doi.org/10.1016/0304-4203(95)00031-L

    Article  Google Scholar 

  83. Rudnick RL, Gao S (2005) Composition of the continental crust. In: Rudnick RL (ed) The crust treatise on geochemistry. Elsevier, Pergamon, pp 1–64

    Google Scholar 

  84. Saager PM, de Baar HJW, de Jong JTM, Nolting RF, Schijf J (1997) Hydrography and local sourses of dissolved trace metals Mn, Ni, Cu, and Cd in the northeast Atlantic Ocean. Mar Chem 57:195–216

    Article  Google Scholar 

  85. Saito MA, Moffet JW (2001) Complexation of cobalt by natural organic ligands in the Sargasso Sea as determined by a new high-sensitivity electrochemical cobalt speciation method suitable for open ocean work. Mar Chem 75:49–68

    Article  Google Scholar 

  86. Saito MA, Moffet JW (2002) Temporal and spatial variability of cobalt in the Atlantic Ocean. Geochim Cosmochim Acta 66(11):1943–1953

    Article  Google Scholar 

  87. Saito MA, Moffet JW, Chisholm SW, Waterbury JB (2002) Cobalt limitation and uptake in Prochlorococcus. Limnol Ocenogr 47(6):1629–1636

    Article  Google Scholar 

  88. Saito MA, Moffett JW, DiTullio GR (2004) Cobalt and nickel in the Peru upwelling region: a major flux of labile cobalt utilized as a micronutrient. Glob Biogeochem Cycles 18(4):GB4030

    Article  Google Scholar 

  89. Sakamoto-Arnold CM, Hanson AK, Huizinga DL, Kester DR (1987) Spatial and temporal variability of cadmium in gulf stream warm core rings and associated waters. J Mar Res 45:201–230

    Article  Google Scholar 

  90. Sasayama R, Hioki N, Morita Y, Isoda Y, Imai K, Ooki A, Kuma K (2018) Upward transport of iron at the west shelf edge–slope of the Okinawa Trough in the East China Sea. J Oceanogr. https://doi.org/10.1007/s10872-018-0468-y

    Article  Google Scholar 

  91. Schlitzer R (2015) Ocean data view. https://odv.awi.de. Accessed Feb 2020

  92. SCOR Working Group (2007) GEOTRACES—an international study of the global marine biogeochemical cycles of trace elements and their isotopes. Chem Erde-Geochem 67:85–131. https://doi.org/10.1016/j.chemer.2007.02.001

    Article  Google Scholar 

  93. Sohrin Y, Urushihara S, Nakatsuka S, Kono T, Higo E, Minami T, Norisuye K, Umetani S (2008) Multielemental determination of GEOTRACES key trace metals in seawater by ICPMS after preconcentration using an ethylenediaminetriacetic acid chelating resin. Anal Chem 80(16):6267–6273. https://doi.org/10.1021/ac800500f

    Article  Google Scholar 

  94. Statham PJ, Yeats PA, Landing WM (1998) Manganese in the eastern Atlantic Ocean: processes influencing deep and surface water distributions. Mar Chem 61(1–2):55–68. https://doi.org/10.1016/S0304-4203(98)00007-3

    Article  Google Scholar 

  95. Su H, Yang R, Zhang A, Li Y (2015) Dissolved iron distribution and organic complexation in the coastal waters of the East China Sea. Mar Chem 173:208–221. https://doi.org/10.1016/j.marchem.2015.03.007

    Article  Google Scholar 

  96. Su H, Yang R, Zhang A, Li Y, Qu S, Wang X (2017) Characteristics of trace metals and phosphorus in seawaters offshore the Yangtze River. Mar Pollut Bull 124(2):1020–1032

    Article  Google Scholar 

  97. Su H, Yang R, Zhang A, Li Y, Wang X (2018) Influence of humic substances on iron distribution in the East China Sea. Chemosphere 204:450–462. https://doi.org/10.1016/j.chemosphere.2018.04.018

    Article  Google Scholar 

  98. Sunda WG, Huntsman SA (1995) Cobalt and Zinc interreplacement in marine phytoplankton: biological and geochemical implications. Limnol Ocenogr 40(8):1404–1417

    Article  Google Scholar 

  99. Sverdrup HU, Johnson MW, Fleming RH (1942) The oceans, their physics, chemistry and general biology. Prentice Hall, Englewood Cliffs, p 719

    Google Scholar 

  100. Taylor SR (1964) Abundance of chemical elements in the continental crust: a new table. Geochim Cosmochim Acta 28:1273–1285

    Article  Google Scholar 

  101. Tebo B (1998) Mn(II) Oxidation in marine environments is likely bacterial: comment on “comment on ‘oxidation of cobalt and manganese in seawater via a common microbially catalyzed pathway’, by J. W. Moffett and J. Ho.” Geochim Cosmochim Acta 62:357–358

    Article  Google Scholar 

  102. Tebo B, Nealson K, Emerson S, Jacobs L (1984) Microbial meditation of Mn(II) and Co(II) precipitation at the O2/H2 interfaces in two anoxic fjords. Limnol Oceanogr 29:1247–1258

    Article  Google Scholar 

  103. Thompson CM, Ellwood MJ, Sander SG (2014) Dissolved copper speciation in the Tasman Sea SW Pacific Ocean. Mar Chem 164:84–94. https://doi.org/10.1016/j.marchem.2014.06.003

    Article  Google Scholar 

  104. Vu HTD, Sohrin Y (2013) Diverse stoichiometry of dissolved trace metals in the Indian Ocean. Sci Rep. https://doi.org/10.1038/srep01745

    Article  Google Scholar 

  105. Wang ZW, Ren JL, Jiang S, Liu SM, Xuan JL, Zhang J (2016) Geochemical behavior of dissolved manganese in the East China Sea: seasonal variation, estuarine removal, and regeneration under suboxic conditions. Geochem Geophys Geosyst 17(2):282–299. https://doi.org/10.1002/2015GC006128

    Article  Google Scholar 

  106. Wang FJ, Chen Y, Guo ZG, Gao HW, Mackey KR, Yao XH, Zhuang GS, Paytan A (2017) Combined effects of iron and copper from atmospheric dry deposition on ocean productivity. Geophy Res Lett 44:2546–2555. https://doi.org/10.1002/2016GL072349

    Article  Google Scholar 

  107. Wang RM, Archer C, Bowie AR, Vance D (2019) Zinc and nickel isotopes in seawater from the Indian Sector of the Southern Ocean: the impact of natural iron fertilization versus Southern Ocean hydrography and biogeochemistry. Chem Geol 511:452–464

    Article  Google Scholar 

  108. Wen LS, Jiann KT, Santschi PH (2006) Physicochemical speciation of bioactive trace metals (Cd, Cu, Fe, Ni) in the oligotrophic South China Sea. Mar Chem 101:104–129. https://doi.org/10.1016/j.marchem.2006.01.005

    Article  Google Scholar 

  109. Windom HL, Smith RG, Maeda M (1985) The geochemistry of lead in rivers, estuaries and the continental shelf of the southeastern United States. Mar Chem 17(1):43–56. https://doi.org/10.1016/0304-4203(85)90035-0

    Article  Google Scholar 

  110. Wu JF, Boyle EA (1997) Lead in the western North Atlantic Ocean: completed response to leaded gasoline phaseout. Geochim Cosmochim Acta 61(15):3279–3283

    Article  Google Scholar 

  111. Wu J, Luther GW III (1994) Size-fractionated iron concentrations in the water column of the western North Atlantic Ocean. Limnol Oceanogr 39(5):1119–1129

    Article  Google Scholar 

  112. Wu J, Luther GW III (1995) Complexation of Fe (III) by natural organic ligands in the Northwest Atlantic Ocean by a competitive ligand equilibration method and a kinetic approach. Mar Chem 50(1):159–177. https://doi.org/10.1016/0304-4203(95)00033-N

    Article  Google Scholar 

  113. Wu J, Roshan S, Chen G (2014) The distribution of dissolved manganese in the tropical–subtropical North Atlantic during US GEOTRACES 2010 and 2011 cruises. Mar Chem 166:9–24. https://doi.org/10.1016/j.marchem.2014.08.007

    Article  Google Scholar 

  114. Xie RC, Galer SJG, Abouchami W, Rijkenberg MJA, Jong JD, de Baar HJW, Andreae MO (2015) The cadmium-phosphate relationship in the western South Atlantic—the importance of mode and intermediate waters on the global systematics. Mar Chem 117:110–123. https://doi.org/10.1016/j.marchem.2015.06.011

    Article  Google Scholar 

  115. Yang R, Su H, Qu S, Wang X (2017) Capacity of humic substances to complex with iron at different salinities in the Yangtze River estuary and East China Sea. Sci Rep. https://doi.org/10.1038/s41598-017-01533-6

    Article  Google Scholar 

  116. Yuan W, Zhang J (2006) High correlations between Asian dust events and biological productivity in the western North Pacific. Geophy Res Lett 33:L07603. https://doi.org/10.1029/2005GL025174,2006

    Article  Google Scholar 

  117. Zhang XY, Arimoto R, Zhu GH, Chen T, Zhang GY (1998) Concentration, size-distribution and deposition of mineral aerosol over Chinese desert regions. Tellus 50B:317–330

    Article  Google Scholar 

  118. Zheng L, Sohrin Y (2019) Major lithogenic contributions to the distribution and budget of iron in the North Pacific Ocean. Sci Rep. https://doi.org/10.1038/s41598-019-48035-1

    Article  Google Scholar 

  119. Zheng L, Minami T, Takano S, Minami H, Sohrin Y (2017) Distribution and stoichiometry od Al, Mn, Fe Co, Ni, Cu, Zn, Cd, and Pb in seawater around the Juan de Fuca Ridge. J Oceanogr 73:669–685. https://doi.org/10.1007/s10872-017-0424-2

    Article  Google Scholar 

  120. Zheng L, Minami T, Konagaya W, Chan C-Y, Tsujisaka M, Takano S, Norisuye K, Sohrin Y (2019) Distinct basin-scale-distributions of aluminum, manganese, cobalt, and lead in the North pacific Ocean. Geochim Cosmochim Acta 254:102–121. https://doi.org/10.1016/j.gca.2019.03.038

    Article  Google Scholar 

  121. Zheng L, Minami T, Takano S, Ho T-Y, Sohrin Y (2020) Sectional distribution patterns of Cd, Ni, Zn, and Cu in the North Pacific Ocean: systematic importance of scavenging. Glob Biogeochem Cycles. https://doi.org/10.1002/essoar.10502049.1

    Article  Google Scholar 

Download references

Acknowledgements

We are grateful to the captain and the crew of R/V Hakuho-Maru (JAMSTEC) for their help during the KH-15-3 cruise. We also thank onboard scientists, technicians, and students for assistance with sampling and analysis of routine data. This research was supported by the Japan Society for the Promotion of Science (JSPS) KAKENHI Grants (15H01727 and 19H01148) and the Collaborative Research Program of Institute for Chemical Research, Kyoto University Grants (2016-43 and 2017-43). Finally, we  thanks Dr. Laodong Guo and two anonymous reviewers for their helpful constructive comments. We would like to thank Editage (www.editage.com) for English language editing.

Author information

Affiliations

Authors

Corresponding author

Correspondence to Yuzuru Nakaguchi.

Electronic supplementary material

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Nakaguchi, Y., Ikeda, Y., Sakamoto, A. et al. Distribution and stoichiometry of Al, Mn, Fe, Co, Ni, Cu, Zn, Cd, and Pb in the East China Sea. J Oceanogr (2020). https://doi.org/10.1007/s10872-020-00577-z

Download citation

Keywords

  • GEOTRACES
  • East China Sea
  • Trace metals
  • Total dissolvable species
  • Dissolved species
  • Labile particulate species