Skip to main content

Advertisement

Log in

Continuous winter oceanic profiling in the Cape Darnley Polynya, East Antarctica

  • Original Article
  • Published:
Journal of Oceanography Aims and scope Submit manuscript

Abstract

Antarctic coastal polynyas provide extremely dense water to the global abyss, but the dense water formation process has been poorly monitored in winter. This study developed a new tethered profiler to realize time-series observations of the water column in the Cape Darnley Polynya, East Antarctica. The system successfully obtained temperature and salinity profiles at 10-day intervals from March to November 2017. From March to April, significant cooling and vertical mixing started, while stratification collapsed. Salinity increased rapidly from April to late-May and then gradually increased until October. Salinity development was largely consistent with the cumulative salt increase due to sea-ice production at the initial stage, but not at latter stages, indicating the influence of cross-shelf exchange. These results highlighted the potential of the measurement platform to fill the remaining gap in the global ocean monitoring network.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  • Arndt JE et al (2013) The international bathymetric chart of the southern ocean (IBCSO) version 1.0: a new bathymetric compilation covering circum-Antarctic waters. Geophys Res Lett 40:3111–3117. https://doi.org/10.1002/grl.50413

    Article  Google Scholar 

  • Bindoff NL, Williams GD, Allison I (2001) Sea-ice growth and water-mass modification in the Mertz Glacier polynya, East Antarctica, during winter. Ann Glaciol 33:399–406. https://doi.org/10.3189/172756401781818185

    Article  Google Scholar 

  • Budillon G, Castagno P, Aliani S, Spezie G, Padman L (2011) Thermohaline variability and Antarctic bottom water formation at the Ross Sea shelf break. Deep Sea Res I 58:1002–1018

    Article  Google Scholar 

  • Cavalieri DJ, Martin S (1994) The contribution of Alaskan, Siberian, and Canadian coastal polynyas to the cold halocline layer of the Arctic Ocean. J Geophys Res 99:18343–18362. https://doi.org/10.1029/94JC01169

    Article  Google Scholar 

  • Fusco G, Budillon G, Spezie G (2009) Surface heat fluxes and thermohaline variability in the Ross Sea and in Terra Nova Bay polynya. Cont Shelf Res 29:1887–1895

    Article  Google Scholar 

  • Gould WJ, Roemmich D, Wijffels S, Freeland H, Ignaszewsky M, Jianping X, Pouliquen S, Desaubies Y, Send U, Radhakrishnan K, Takeuchi K, Kim K, Danchenkov M, Sutton P, King B, Owens B, Riser S (2004) Argo profiling floats bring new era of in situ ocean observations. EOS. https://doi.org/10.1029/2004EO190002

    Article  Google Scholar 

  • Guo G, Shi J, Gao L, Tamura T, Williams GD (2019) Reduced sea ice production due to upwelled oceanic heat flux in Prydz Bay East Antarctica. Geophys Res Lett. https://doi.org/10.1029/2018GL081463

    Article  Google Scholar 

  • Herraiz-Borreguero L, Coleman R, Allison I, Rintoul SR, Craven M, Williams GD (2015) Circulation of modified circumpolar deep water and basal melt beneath the Amery Ice Shelf, East Antarctica. J Geophys Res 120:3098–3112

    Article  Google Scholar 

  • Heywood KJ et al (2014) Ocean processes at the Antarctic continental slope. Phil Trans R Soc A 372:20130047. https://doi.org/10.1098/rsta.2013.0047

    Article  Google Scholar 

  • Jacobs SS, Giulivi CF (1998) Interannual ocean and sea ice variability in the Ross Sea. In ocean, ice, and atmosphere: interactions at the Antarctic continental margin, Antarctic Research Series 75:135–150, 380 pp

  • Jacobs SS, Giulivi CF (1999) Thermohaline data and ocean circulation on the Ross Sea continental shelf. In: Spezie G, Manzella GMR (eds) Oceanography of the Ross Sea Antarctica. Springer, Berlin, pp 3–16

    Chapter  Google Scholar 

  • Jacobs SS, Amos AF, Bruchhausen PM (1970) Ross sea oceanography and Antarctic bottom water formation. Deep Sea Res Oceanogr Abstr 17(6):935–962

    Article  Google Scholar 

  • Jayne SR, Roemmich D, Zilberman N, Riser SC, Johnson KS, Johnson GC, Piotrowicz SR (2017) The argo program: present and future. Oceanography 30(2):18–28. https://doi.org/10.5670/oceanog.2017.213

    Article  Google Scholar 

  • Johnson GC (2008) Quantifying Antarctic bottom water and North Atlantic deep water volumes. J Geophys Res 113:C05027. https://doi.org/10.1029/2007JC004477

    Article  Google Scholar 

  • Kaufman DE, Friedrichs MAM, Smith WO Jr, Queste BY, Heywood KJ (2014) Biogeochemical variability in the southern Ross Sea as observed by a glider deployment. Deep Sea Res I 92:93–106

    Article  Google Scholar 

  • Kitade Y, Shimada K, Tamura T, Williams GD, Aoki S, Fukamachi Y, Roquet F, Hindell M, Ushio S, Ohshima KI (2014) Antarctic bottom water production from the Vincennes Bay Polynya, East Antarctica. Geophys Res Lett 41:3528–3534. https://doi.org/10.1002/2014GL059971

    Article  Google Scholar 

  • Lacarra M, Houssais M-N, Herbaut C, Sultan E, Beauverger M (2014) Dense shelf water production in the Adélie depression, East Antarctica, 2004–2012: impact of the Mertz Glacier calving. J Geophys Res 119:5203–5220

    Article  Google Scholar 

  • Miles T, Lee SH, Wahlin A, Ha HK, Kim TW, Assmann KM, Schofield O (2016) Glider observations of the Dotson Ice Shelf outflow. Deep Sea Res II 123:16–29

    Article  Google Scholar 

  • Ohshima KI, Kawamura T (1994) Oceanographic data in Lutzow-Holm Bay of the Antarctic climate research program from January 1991 to February 1992 (JARE-32) JARE data reports. Oceanography/JARE data reports. Oceanography 15:1–35

    Google Scholar 

  • Ohshima KI, Fukamachi Y, Williams GD, Nihashi S, Roquet F, Kitade Y et al (2013) Antarctic bottom water production by intense sea-ice formation in the Cape Darnley polynya. Nat Geosci 6(3):235–240

    Article  Google Scholar 

  • Orsi AL, Wiederwhol CL (2009) A recount of Ross Sea waters. Deep Sea Res II 56:778–795

    Article  Google Scholar 

  • Rintoul SR (1998) On the origin and influence of Adélie land bottom water. Ocean, ice, and atmosphere: interactions at the Antarctic continental margin. Antarc Res Ser 75:151–171

    Google Scholar 

  • Robinson NJ, Williams MJM (2012) Iceberg induced changes to polynya operation and regional oceanography in the southern Ross Sea, Antarctica, from in situ observations. Antarct Sci 24:514–526. https://doi.org/10.1017/S0954102012000296

    Article  Google Scholar 

  • Roquet F, Williams G, Hindell MA, Harcourt R, McMahon C, Guinet C et al (2014) A Southern Indian Ocean database of hydrographic profiles obtained with instrumented elephant seals. Sci Data 1:140028. https://doi.org/10.1038/sdata.2014.28

    Article  Google Scholar 

  • Rosenberg M, Bindoff NL, Williams GD (2004) Mertz Polynya Experiment, Aurora Australis science cruises au9807 and au9901, and Tangaroa science cruise ta0051—ship-based CTD, ADCP, LADCP and mooring data. Aust Antarct Data Cent. https://doi.org/10.26179/5c9c01b329429(updated 2019)

    Article  Google Scholar 

  • Rusciano E, Budillon G, Fusco G, Spezie G (2013) Evidence of atmosphere-sea ice-ocean coupling in the Terra Nova Bay polynya (Ross Sea Antarctica). Cont Shelf Res 61–62:112–124. https://doi.org/10.1016/j.csr.2013.04.002

    Article  Google Scholar 

  • Silvano A, Rintoul SR, Pena-Molino B, Hobbs WR, van Wijk E, Aoki S et al (2018) Freshening by glacial meltwater enhances melting of ice shelves and reduces formation of Antarctic bottom water. Sci Adv 4(4):eaap9467. https://doi.org/10.1126/sciadv.aap9467

    Article  Google Scholar 

  • Snow K, Sloyan BM, Rintoul SR, Hogg AM, Downes SM (2016a) Controls on circulation, cross-shelf exchange, and dense water formation in an Antarctic polynya. Geophys Res Lett 43:7089–7096. https://doi.org/10.1002/2016GL069479

    Article  Google Scholar 

  • Snow K, Hogg AM, Sloyan BM, Downes SM (2016b) Sensitivity of Antarctic bottom water to changes in surface buoyancy fluxes. J Clim 29:313–330

    Article  Google Scholar 

  • Stewart AL, Thompson AF (2015) Eddy-mediated transport of warm circumpolar deep water across the Antarctic shelf break. Geophys Res Lett 42:432–440. https://doi.org/10.1002/2014GL062281

    Article  Google Scholar 

  • Tamura T, Ohshima KI, Nihashi S (2008) Mapping of sea ice production for Antarctic coastal polynyas. Geophys Res Lett 35:L07606. https://doi.org/10.1029/2007GL032903

    Article  Google Scholar 

  • Tamura T, Ohshima KI, Fraser AD, Williams GD (2016) Sea ice production variability in Antarctic coastal polynyas. J Geophys Res 121:2967–2979. https://doi.org/10.1002/2015JC011537

    Article  Google Scholar 

  • Toole JM, Krishfield RA, Timmermans ML, Proshutinsky A (2015) The ice-tethered profiler: argo of the Arctic. Oceanography 24:126–135. https://doi.org/10.5670/oceanog.2011.64

    Article  Google Scholar 

  • Tressler WL, Ommundsen AM (1962) Seasonal oceanographic observations in McMurdo Sound, Antarctica. U.S. Navy Hydrographic Office Technical Report T-125. 156 pp

  • Ushio S, Takizawa T (1993) Oceanographic data in Lutzow-Holm Bay of Antarctic climate research programme from March 1990 to January 1991 (JARE-31). JARE data reports Oceanography/JARE data reports. Oceanography 13:1–34

    Google Scholar 

  • Williams GD, Bindoff NL, Marsland SJ, Rintoul SR (2008) Formation and export of dense shelf water from the Adélie Depression East Antarctica. J Geophys Res 113:C04039. https://doi.org/10.1029/2007JC004346

    Article  Google Scholar 

  • Williams GD, Herraiz-Borreguero L, Roquet F, Tamura T, Ohshima KI, Fukamachi Y et al (2016) The suppression of Antarctic Bottom Water formation by melting ice shelves in Prydz Bay. Nat Commun 7(1):12577. https://doi.org/10.1038/ncomms12577

    Article  Google Scholar 

Download references

Acknowledgements

We are grateful to Mrs. Masaaki Ichikawa, Toshihiko Nakagawa, Kengo Kobayashi, Masato Kotake, Yoshimori Shimoda, and Seiji Nakao for their help in developing and refurbishing the profiler platform. Our operational successes are indebted to Mrs. Satoshi Ozawa and Tomohide Noguchi and Dr. Yasushi Fukamachi for their assistance with mooring preparation. We thank the captain, officers, crews, and researchers aboard Shirase, who all contributed to the hydrographic observations. This paper was substantially improved by two anonymous reviewers. Tethered profiler data are available through the NIPR ADS database (https://ads.nipr.ac.jp/dataset/A20200518-001). Sea ice production data is available at https://www.lowtem.hokudai.ac.jp/wwwod/polar-seaflux/. This work was supported by Grant-in-Aid for Scientific Research (25550002, 16K12574, 17K12811, 17H04710 and 17H06322) from the MEXT of the Japanese Government, the Science Program of Japanese Antarctic Research Expedition (JARE) as Prioritized Research Project (AJ0902), National Institute of Polar Research (NIPR) through Project Research KP-303, the Center for the Promotion of Integrated Sciences of SOKENDAI, and the Joint Research Program of the Institute of Low Temperature Science, Hokkaido University.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Daisuke Hirano.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Aoki, S., Ono, K., Hirano, D. et al. Continuous winter oceanic profiling in the Cape Darnley Polynya, East Antarctica. J Oceanogr 76, 365–372 (2020). https://doi.org/10.1007/s10872-020-00550-w

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10872-020-00550-w

Keywords

Navigation