Past and lost influence of the Kuroshio on estuarine recruitment of Anguilla japonica glass eels

Abstract

The present study aims to reveal the influence of path fluctuations of the western boundary current (Kuroshio) and other regional environmental factors on coastal recruitment of transported organisms. As a model species, we chose a catadromous eel species, Japanese eel Anguilla japonica, which is transported poleward by the Kuroshio in early life stages. We analyzed a 50-year record of A. japonica juvenile (glass eel) catch from an estuary (Lake Hamana, Japan) with regional environmental data, using multiple linear regression with stepwise variable selection. Kuroshio path indicator (fishing-season mean of sea level difference between two tide stations), year, or their interaction showed moderate to strong evidence of an effect on the natural log-transformed catch of glass eels in the regression models. Strong evidence of an interaction effect between the Kuroshio path indicator and year was also found on the natural log-transformed catch-per-unit-effort. The estuarine recruitment of A. japonica glass eels was suggested to be positively influenced by nearshore Kuroshio position, but the influence has been lost in recent decades. The present study provides statistically robust evidence of the environment–recruitment relationship (western boundary current–recruitment link) for coastal species. This finding enhances our understanding of coastal recruitment of organisms transported by western boundary currents and is potentially essential in forecasting recruitment for fisheries management and conservation. Furthermore, our findings suggest that stock decline may lead to poorer understanding of environment–recruitment relationship.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

References

  1. Aoki I, Murayama T (1993) Spawning pattern of the Japanese sardine Sardinops melanostictus off southern Kyushu and Shikoku, southwestern Japan. Mar Ecol Prog Ser 97:127–134

    Article  Google Scholar 

  2. Aoki K, Yamamoto T, Fukuda N et al (2018) Enhanced local recruitment of glass eel Anguilla japonica in Oyodo River, Miyazaki and offshore environmental conditions in 2002. Fish Sci 84:777–785. https://doi.org/10.1007/s12562-018-1207-4

    Article  Google Scholar 

  3. Arribas C, Fernández-Delgado C, Oliva-Paterna FJ, Drake P (2012) Oceanic and local environmental conditions as forcing mechanisms of the glass eel recruitment to the southernmost European estuary. Estuar Coast Shelf Sci 107:46–57. https://doi.org/10.1016/j.ecss.2012.04.024

    Article  Google Scholar 

  4. Bailey KM, Houde ED (1989) Predation on eggs and larvae of marine fishes and the recruitment problem. Adv Mar Biol 25:1–83. https://doi.org/10.1016/S0065-2881(08)60187-X

    Article  Google Scholar 

  5. Bailey KM, Ciannelli L, Bond NA et al (2005) Recruitment of walleye pollock in a physically and biologically complex ecosystem: a new perspective. Prog Oceanogr 67:24–42. https://doi.org/10.1016/j.pocean.2005.06.001

    Article  Google Scholar 

  6. Baltazar-Soares M, Biastoch A, Harrod C et al (2014) Recruitment collapse and population structure of the European eel shaped by local ocean current dynamics. Curr Biol 24:104–108. https://doi.org/10.1016/j.cub.2013.11.031

    Article  Google Scholar 

  7. Brickman D, Smith PC (2002) Lagrangian stochastic modeling in coastal oceanography. J Atmos Ocean Technol 19:83–99. https://doi.org/10.1175/1520-0426(2002)019%3c0083:LSMICO%3e2.0.CO;2

    Article  Google Scholar 

  8. Dou S-Z, Tsukamoto K (2003) Observations on the nocturnal activity and feeding behavior of Anguilla japonica glass eels under laboratory conditions. Environ Biol Fishes 67:389–395. https://doi.org/10.1023/A:1025894010739

    Article  Google Scholar 

  9. Fukuda N, Aoyama J, Yokouchi K, Tsukamoto K (2016) Periodicities of inshore migration and selective tidal stream transport of glass eels, Anguilla japonica, in Hamana Lake, Japan. Environ Biol Fishes 99:309–323. https://doi.org/10.1007/s10641-016-0475-z

    Article  Google Scholar 

  10. Fukuda N, Kurogi H, Ambe D et al (2018) Location, size and age at onset of metamorphosis in the Japanese eel Anguilla japonica. J Fish Biol 92:1342–1358. https://doi.org/10.1111/jfb.13590

    Article  Google Scholar 

  11. Fukuda N, Yokouchi K, Yamamoto T et al (2019) Salinity and odor preferences of Japanese eel during the first year of post-recruitment growth in saline water. J Ethol 37:93–99. https://doi.org/10.1007/s10164-018-0572-x

    Article  Google Scholar 

  12. Han YS (2011) Temperature-dependent recruitment delay of the Japanese glass eel Anguilla japonica in East Asia. Mar Biol. https://doi.org/10.1007/s00227-011-1739-y

    Article  Google Scholar 

  13. Hare JA, Cowen RK (1996) Transport mechanisms of larval and pelagic juvenile bluefish (Pomatomus saltatrix) from South Atlantic Bight spawning grounds to Middle Atlantic Bight nursery habitats. Limnol Oceanogr 41:1264–1280. https://doi.org/10.4319/lo.1996.41.6.1264

    Article  Google Scholar 

  14. Hiyama Y (1952) Thermotaxis of eel fry in stage of ascending river mouth. Jpn J Ichthyol 2:23–30. https://doi.org/10.11369/jji1950.2.23

    Article  Google Scholar 

  15. Inoue N, Sekiguchi H (2009) Can long-term variation in catch of Japanese spiny lobster Panulirus japonicus be explained by larval supply through the Kuroshio Current? N Z J Mar Freshw Res 43:89–99. https://doi.org/10.1080/00288330909509984

    Article  Google Scholar 

  16. Ishihara M (2009) Wind observations in Japan Meteorological Agency. Wind Eng 34:322–328 (in Japanese)

    Google Scholar 

  17. Itakura H, Kaino T, Miyake Y et al (2015) Feeding, condition, and abundance of Japanese eels from natural and revetment habitats in the Tone River, Japan. Environ Biol Fishes 98:1871–1888. https://doi.org/10.1007/s10641-015-0404-6

    Article  Google Scholar 

  18. Itoh S, Saruwatari T, Nishikawa H et al (2011) Environmental variability and growth histories of larval Japanese sardine (Sardinops melanostictus) and Japanese anchovy (Engraulis japonicus) near the frontal area of the Kuroshio. Fish Oceanogr 20:114–124. https://doi.org/10.1111/j.1365-2419.2011.00572.x

    Article  Google Scholar 

  19. Jacoby D, Gollock M (2014) Anguilla japonica. The IUCN Red List of threatened species 2014: e.T166184A1117791. https://dx.doi.org/10.2305/IUCN.UK.2014-1.RLTS.T166184A1117791.en. Accessed 30 May 2017

  20. Kasai A, Kimura S, Sugimoto T (1993) Warm water intrusion from the Kuroshio into the coastal areas south of Japan. J Oceanogr 49:607–624. https://doi.org/10.1007/BF02276747

    Article  Google Scholar 

  21. Kawabe M (1980) Sea level variations along the south coast of Japan and the large meander in the Kuroshio. J Oceanogr Soc Jpn 36:97–104. https://doi.org/10.1007/BF02312095

    Article  Google Scholar 

  22. Kawabe M (1995) Variations of current path, velocity, and volume transport of the Kuroshio in relation with the large meander. J Phys Oceanogr 25:3103–3117. https://doi.org/10.1175/1520-0485(1995)025%3c3103:VOCPVA%3e2.0.CO;2(in Japanese with English abstract)

    Article  Google Scholar 

  23. Kimura S, Döös K, Coward AC (1999) Numerical simulation to resolve the issue of downstream migration of the Japanese eel. Mar Ecol Prog Ser 186:303–306

    Article  Google Scholar 

  24. Kumagai NH, García Molinos J, Yamano H et al (2018) Ocean currents and herbivory drive macroalgae-to-coral community shift under climate warming. Proc Natl Acad Sci 115:8990–8995. https://doi.org/10.1073/pnas.1716826115

    Article  Google Scholar 

  25. Mather FJ, Mason JM, Jones AC (1995) Historical document : life history and fisheries of Atlantic bluefin tuna. NOAA Tech Memo NMFS SEFSC 370:165

    Google Scholar 

  26. McCleave JD (1987) Migration of Anguilla in the ocean: signposts for adults! Signposts for leptocephali? Signposts in the sea: proceedings of a multidisciplinary workshop on Marine Animal Orientation and Migration, 29–31 May 1986, pp 102–117

  27. Miller MJ, Tsukamoto K (2017) The ecology of oceanic dispersal and survival of anguillid leptocephali. Can J Fish Aquat Sci 74:958–971. https://doi.org/10.1139/cjfas-2016-0281

    Article  Google Scholar 

  28. Miller MJ, Otake T, Minagawa G et al (2002) Distribution of leptocephali in the Kuroshio Current and East China Sea. Mar Ecol Prog Ser 235:279–288

    Article  Google Scholar 

  29. Mitani I (1988) Foundation and verification of forecasting on the description and abundance of sardine and anchovy that comes over to off Kanagawa Prefecture-II. Bull Kanag Prefect Fish Exp Stn 9:1–8 (in Japanese)

    Google Scholar 

  30. Miyake Y, Kimura S, Itoh S et al (2015) Roles of vertical behavior in the open-ocean migration of teleplanic larvae: a modeling approach to the larval transport of Japanese spiny lobster. Mar Ecol Prog Ser 539:93–109. https://doi.org/10.3354/meps11499

    Article  Google Scholar 

  31. Miyake Y, Takeshige A, Itakura H et al (2018) Predation on glass eels of Japanese eel Anguilla japonica in the Tone River Estuary, Japan. Fish Sci 84:1009–1014. https://doi.org/10.1007/s12562-018-1238-x

    Article  Google Scholar 

  32. Miyazawa Y, Zhang RC, Guo XY et al (2009) Water mass variability in the western North Pacific detected in a 15-year eddy resolving ocean reanalysis. J Oceanogr 65:737–756

    Article  Google Scholar 

  33. Myers RA (1998) When do environment–recruitment correlations work? Rev Fish Biol Fish 8:285–305. https://doi.org/10.1023/A:1008828730759

    Article  Google Scholar 

  34. Nagata Y, Takeuchi J, Uchida M et al (1999) Current nature of the Kuroshio in the vicinity of the Kii Peninsula. J Oceanogr 55:407–416. https://doi.org/10.1023/A:1007858516891

    Article  Google Scholar 

  35. Neira FJ, Keane JP (2008) Ichthyoplankton-based spawning dynamics of blue mackerel (Scomber australasicus) in south-eastern Australia: links to the East Australian Current. Fish Oceanogr 17:281–298. https://doi.org/10.1111/j.1365-2419.2008.00479.x

    Article  Google Scholar 

  36. NFSC (2012) 54th northeast regional stock assessment workshop (54th SAW), assessment report. US Dep Commer Northeast Fish Sci Cent Ref Doc 12–18:600

    Google Scholar 

  37. Okamura H, Ikeda S, Morita T, Eguchi S (2016) Risk assessment of radioisotope contamination for aquatic living resources in and around Japan. Proc Natl Acad Sci 113:3838–3843. https://doi.org/10.1073/pnas.1519792113

    Article  Google Scholar 

  38. Olson DB (2001) Biophysical dynamics of western transition zones: a preliminary synthesis. Fish Oceanogr 10:133–150. https://doi.org/10.1046/j.1365-2419.2001.00161.x

    Article  Google Scholar 

  39. Onikura N, Inui R, Oikawa S (2013) Path of the Kuroshio Current affects the presence of several goby species in the brackish water area in northeastern Kyushu Island, Japan: results of a decade-long survey in the Kita River. Ichthyol Res 60:98–101. https://doi.org/10.1007/s10228-012-0305-z

    Article  Google Scholar 

  40. Otake T, Miller MJ, Inagaki T et al (2006) Evidence for migration of metamorphosing larvae of Anguila japonica in the Kuroshio. Coast Mar Sci 30:453–458

    Google Scholar 

  41. Pershing AJ, Alexander MA, Hernandez CM et al (2015) Slow adaptation in the face of rapid warming leads to collapse of the Gulf of Maine cod fishery. Science 350:809–812. https://doi.org/10.1126/science.aac9819

    Article  Google Scholar 

  42. R Core Team (2018) R: A language and environment for statistical computing. R Core Team, Geneva

    Google Scholar 

  43. Rypina II, Llopiz JK, Pratt LJ, Lozier MS (2014) Dispersal pathways of American eel larvae from the Sargasso Sea. Limnol Oceanogr 59:1704–1714. https://doi.org/10.4319/lo.2014.59.5.1704

    Article  Google Scholar 

  44. Sassa C, Konishi Y, Mori K (2006) Distribution of jack mackerel (Trachurus japonicus) larvae and juveniles in the East China Sea, with special reference to the larval transport by the Kuroshio Current. Fish Oceanogr 15:508–518. https://doi.org/10.1111/j.1365-2419.2006.00417.x

    Article  Google Scholar 

  45. Schmidt J (1922) The breeding places of the eel. Philos Trans R Soc Lond Ser B, Contain Pap Biol Char 211:179–208

    Google Scholar 

  46. Sekine Y, Fujita K (1999) Why does the sea level difference between Kushimoto and Uragami show periods of large meander and non-large meander paths of the Kuroshio south of Japan? J Oceanogr 55:43–51. https://doi.org/10.1023/A:1007857005988

    Article  Google Scholar 

  47. Senou H, Matsuura K, Shinohara G (2006) Checklist of fishes in the Sagami Sea with zoogeographical comments on shallow water fishes occurring along the coastlines under the Influence of the Kuroshio Current. Mem Natn Sci Mus Tokyo 41:389–542

    Google Scholar 

  48. Shinoda A, Aoyama J, Miller MJ et al (2011) Evaluation of the larval distribution and migration of the Japanese eel in the western North Pacific. Rev Fish Biol Fish 21:591–611. https://doi.org/10.1007/s11160-010-9195-1

    Article  Google Scholar 

  49. Sponaugle S, Lee T, Kourafalou V, Pinkard D (2005) Florida current frontal eddies and the settlement of coral reef fishes. Limnol Oceanogr 50:1033–1048. https://doi.org/10.4319/lo.2005.50.4.1033

    Article  Google Scholar 

  50. Stegmann PM, Yoder JA (1996) Variability of sea-surface temperature in the South Atlantic bight as observed from satellite: implications for offshore-spawning fish. Cont Shelf Res 16:843–861. https://doi.org/10.1016/0278-4343(95)00029-1

    Article  Google Scholar 

  51. Sudo R, Fukuda N, Aoyama J, Tsukamoto K (2013) Age and body size of Japanese eels, Anguilla japonica, at the silver-stage in the Hamana Lake system, Japan. Coast Mar Sci 36:13–18

    Google Scholar 

  52. Takeuchi J (1989) Warm water intrusion in the southern area of Kumano-nada. Bull Jpn Soc Fish Oceanogr 53:242–254 (in Japanese with English abstract)

    Google Scholar 

  53. Tanaka E (2014) Stock assessment of Japanese eels using Japanese abundance indices. Fish Sci 80:1129–1144. https://doi.org/10.1007/s12562-014-0807-x

    Article  Google Scholar 

  54. Tosi L, Spampanato A, Sola C, Tongiorgi P (1990) Relation of water odour, salinity and temperature to ascent of glass-eels, Anguilla anguilla (L.): a laboratory study. J Fish Biol 36:327–340. https://doi.org/10.1111/j.1095-8649.1990.tb05613.x

    Article  Google Scholar 

  55. Trancart T, Lambert P, Rochard E et al (2012) Alternative flood tide transport tactics in catadromous species: Anguilla anguilla, Liza ramada and Platichthys flesus. Estuar Coast Shelf Sci 99:191–198. https://doi.org/10.1016/j.ecss.2011.12.032

    Article  Google Scholar 

  56. Tsukamoto K (2006) Spawning of eels near a seamount. Nature 439:929. https://doi.org/10.1038/439929a

    Article  Google Scholar 

  57. Tsukamoto K, Yamada Y, Okamura A et al (2009) Positive buoyancy in eel leptocephali: an adaptation for life in the ocean surface layer. Mar Biol 156:835–846. https://doi.org/10.1007/s00227-008-1123-8

    Article  Google Scholar 

  58. Tsukamoto K, Chow S, Otake T et al (2011) Oceanic spawning ecology of freshwater eels in the western North Pacific. Nat Commun 2:179. https://doi.org/10.1038/ncomms1174

    Article  Google Scholar 

  59. Vergés A, Steinberg PD, Hay ME et al (2014) The tropicalization of temperate marine ecosystems: climate-mediated changes in herbivory and community phase shifts. Proc R Soc B Biol Sci 281:20140846. https://doi.org/10.1098/rspb.2014.0846

    Article  Google Scholar 

  60. Wuenschel MJ, Able KW (2008) Swimming ability of eels (Anguilla rostrata, Conger oceanicus) at estuarine ingress: contrasting patterns of cross-shelf transport? Mar Biol 154:775–786. https://doi.org/10.1007/s00227-008-0970-7

    Article  Google Scholar 

  61. Yang H, Lohmann G, Wei W et al (2016) Intensification and poleward shift of subtropical western boundary currents in a warming climate. J Geophys Res Ocean 121:4928–4945. https://doi.org/10.1002/2015JC011513

    Article  Google Scholar 

  62. Yasuda N, Nagai S, Hamaguchi M et al (2009) Gene flow of Acanthaster planci (L.) in relation to ocean currents revealed by microsatellite analysis. Mol Ecol 18:1574–1590. https://doi.org/10.1111/j.1365-294X.2009.04133.x

    Article  Google Scholar 

  63. Yatsu A, Chiba S, Yamanaka Y et al (2013) Climate forcing and the Kuroshio/Oyashio ecosystem. ICES J Mar Sci 70:922–933. https://doi.org/10.1093/icesjms/fst084

    Article  Google Scholar 

  64. Yoo J-T, Nakata H (2001) Implication of onshore-offshore shifts of the Kuroshio axis for coastal shirasu fishery in the Enshu-nada Sea. Bull Jpn Soc Fish Oceanogr 65:51–58 (in Japanese with English abstract)

    Google Scholar 

  65. Zhang WG, Gawarkiewicz GG (2015) Dynamics of the direct intrusion of Gulf Stream ring water onto the Mid-Atlantic Bight shelf. Geophys Res Lett 42:7687–7695. https://doi.org/10.1002/2015GL065530

    Article  Google Scholar 

  66. Zompola S, Katselis G, Koutsikopoulos C, Cladas Y (2008) Temporal patterns of glass eel migration (Anguilla anguilla L. 1758) in relation to environmental factors in the Western Greek inland waters. Estuar Coast Shelf Sci 80:330–338. https://doi.org/10.1016/j.ecss.2008.08.007

    Article  Google Scholar 

Download references

Acknowledgements

Authors are grateful to Shizuoka Prefectural Research Institute of Fishery for providing multi-decadal data and to D. Miyake for language editing. This work was supported by Japan Society for the Promotion of Science (JSPS) KAKENHI Grant number 15K14787.

Author information

Affiliations

Authors

Corresponding author

Correspondence to Yoichi Miyake.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary file1 (DOC 94 kb)

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Miyake, Y., Tellier, MA., Takeshige, A. et al. Past and lost influence of the Kuroshio on estuarine recruitment of Anguilla japonica glass eels. J Oceanogr 76, 259–270 (2020). https://doi.org/10.1007/s10872-020-00543-9

Download citation

Keywords

  • Kuroshio
  • Anguilla japonica
  • Japanese eel
  • Western boundary current
  • Glass eels
  • Coastal recruitment
  • Environment–recruitment relationship