Advertisement

Journal of Oceanography

, Volume 75, Issue 5, pp 441–462 | Cite as

CMIP5 model analysis of future changes in ocean net primary production focusing on differences among individual oceans and models

  • Yuki Nakamura
  • Akira OkaEmail author
Original Article
  • 295 Downloads

Abstract

Previous modeling studies have shown that global primary production will decrease in the future because stratification caused by global warming will reduce the supply of nutrients from the deep ocean. Previous studies have primarily emphasized the importance of nutrient limitation when explaining changes in primary production; however, phytoplankton growth is actually determined by temperature, light, and nutrient limitations. Moreover, although future changes in primary production differ depending on the area, it is not well understood how these mechanisms differ among oceans. The purpose of this study is to quantitatively evaluate the contribution of each limitation factor to explaining future changes in primary production in individual oceans using nine Coupled Model Intercomparison Project Phase 5 (CMIP5) models. First, for each model, we calculate the temperature, light, and nutrient limitations, which are not directly available from CMIP5 output data. Next, we quantitatively evaluate the main drivers of changes in primary production not only for the global ocean, but also separately for low latitudes, the North Atlantic, the North Pacific, the Arctic, and the Southern Ocean. Via a quantitative evaluation of the limitation factors of primary production, we show that, in addition to nutrient limitation, future changes in primary production due to global warming are controlled by warming-induced enhancement of phytoplankton growth and decreasing biomass caused by enhanced grazing. Moreover, we show that future changes in primary production and its mechanisms differ among the various ocean basins.

Keywords

Primary production Marine ecosystem CMIP5 Global warming Ocean biogeochemical model 

Notes

Acknowledgements

The authors thank Dr. James Christian for his handling and editing, which significantly improves the manuscript. They also thank three anonymous reviewers for their constructive comments. Discussions with members of Ocean System Modeling, Division of Climate System Research, AORI are also appreciated. A.O is supported by KAKENHI JP17H06323 and JP16H01588.

References

  1. Aumont O, Bopp L (2006) Globalizing results from ocean in situ iron fertilization studies. Glob Biogeochem Cycle 20:1–15CrossRefGoogle Scholar
  2. Bentsen M, Bethke I, Debernard JB, Iversen T, Kirkevåg A, Seland Ø, Drange H, Roelandt C, Seierstad IA, Hoose C, Kristjansson JE (2013) The Norwegian Earth System Model, NorESM1-M—Part 1: description and basic evaluation of the physical climate. Geosci Model Dev 6:687–720.  https://doi.org/10.5194/gmd-6-687-2013 CrossRefGoogle Scholar
  3. Bindoff N, Willebrand J, Artale V, Cazenave A, Gregory J, Gulev S, Hanawa K, Le Quere C, Levitus S, Norjiri Y, Shum C, Talley L, Unnikrishnan A (2007) Observations: oceanic climate change and sea level, in: Climate Change 2007: the physical science basis, contribution of working group I to the fourth assessment report of the intergovernmental panel on climate change. In: Solomon S, Qin D, Manning M, Chen Z, Marquis M, Averyt KB, Tignor M, Miller HL (eds) Tech. Rep., Intergovernmental Panel on Climate Change, Cambridge University Press, Cambridge, New YorkGoogle Scholar
  4. Bopp L, Monfray P, Aumont O, Dufresne J, Le Treut H, Madec G, Terray L, Orr J (2001) Potential impact of climate change on marine export production. Glob Biogeochem Cycle 15:81–100CrossRefGoogle Scholar
  5. Bopp L, Resplandy L, Orr JC, Doney SC, Dunne JP, Gehlen M, Halloran P, Heinze C, Ilyina T, Seferian R, Tjiputra J, Vichi M (2013) Multiple stressers of ocean ecosystems in the 21st century: projections with CMIP5 models. Biogeosciences 10:6225–6245.  https://doi.org/10.5194/bg-10-6225-2013 CrossRefGoogle Scholar
  6. Boyd PW, Doney SC (2002) Modelling regional responses by marine pelagic ecosystems to global climate change. Geophys Res Lett 29:1–4.  https://doi.org/10.1029/2001GL014130 Google Scholar
  7. Cabré A, Marinov I, Leung S (2015) Consistent global responses of marine ecosystems to future climate change across the IPCC AR5 earth system models. Clim Dyn 45:1253–1280.  https://doi.org/10.1007/s00382-014-2374-3 CrossRefGoogle Scholar
  8. Capotondi A, Alexander MA, Bond NA, Curchitser EN, Scott JD (2012) Enhanced upper ocean stratification with climate change in the CMIP3 models. J Geophys Res 117:C04031.  https://doi.org/10.1029/2011JC007409 CrossRefGoogle Scholar
  9. Collins WJ, Bellouin N, Doutriaux-Boucher M, Gedney N, Halloran P, Hinton T, Hughes J, Jones CD, Joshi M, Liddicoat S, Martin G, O’Connor F, Rae J, Senior C, Sitch S, Totterdell I, Wiltshire A, Woodward S (2011) 2011: development and evaluation of an earth-system model—HadGEM2. Geosci Model Dev 4:1051–1075.  https://doi.org/10.5194/gmd-4-1051- CrossRefGoogle Scholar
  10. Drinkwater KF, Beaugrand G, Kaeriyama M, Kim S, Ottersen G, Perry RI, Portner H-O, Polovina JJ, Takasuka A (2010) On the processes linking climate to ecosystem changes. J Marine Syst 79(3–4):374–388CrossRefGoogle Scholar
  11. Dufresne J-L, Foujols M-A, Denvil S, Caubel A, Marti O, Aumont O, Balkanski Y, Bekki S, Bellenger H, Benshila R, Bony S, Bopp L, Braconnot P, Brockmann P, Cadule P, Cheruy F, Codron F, Cozic A, Cugnet D, de Noblet N, Duvel J-P, Ethé C, Fairhead L, Fichefet T, Flavoni S, Friedlingstein P, Grandpeix J-Y, Guez L, Guilyardi E, Hauglustaine D, Hourdin F, Idelkadi A, Ghattas J, Joussaume S, Kageyama M, Krinner G, Labetoulle S, Lahellec A, Lefebvre M-P, Lefevre F, Levy C, Li ZX, Lloyd J, Lott F, Madec G, Mancip M, Marchand M, Masson S, Meurdesoif Y, Talandier J, Terray P, Viovy N, Vuichard N (2013) Climate change projections using the IPSL-CM5 earth system model: from CMIP3 to CMIP5. Clim Dyn 40:2123–2165.  https://doi.org/10.1007/s00382-012-1636-1 CrossRefGoogle Scholar
  12. Dunne JP (2013) Technical description of Tracers of Ocean Phytoplankton with Allometric Zooplankton version 2 (TOPAZ2) used in GFDL's ESM2M and ESM2G submitted as part of the coupled model intercomparison project phase 5. J Clim.  https://doi.org/10.1175/JCLI-D-12-00150.s1 Google Scholar
  13. Dunne JP, John J, Adcroft A, Griffies SM, Hallberg RW, Shevliakova E, Stouffer RJ, Cooke W, Dunne KA, Harrison MJ, Krasting JP, Malyshev SL, Milly PCD, Phillipps PJ, Sentman LT, Samuels BL, Spelman MJ, Winton M, Wittenberg AT, Zadeh N (2013a) GFDL’s ESM2 global coupled climate-carbon earth system models part I: physical formulation and baseline simulation characteristics. J Clim 25:2247–2267.  https://doi.org/10.1175/jcli-d-11-00560.1 CrossRefGoogle Scholar
  14. Dunne JP, John JG, Shevliakova E, Stouffer RJ, Krasting JP, Malyshev SL, Milly PCD, Sentman LT, Adcroft AJ, Cooke W, Dunne KA, Griffies SM, Hallberg RW, Harrison MJ, Levy H, Wittenberg AT, Phillips PJ, Zadeh N (2013b) GFDL’s ESM2 global coupled climate-carbon earth system models part ii: carbon system formulation and baseline simulation characteristics. J Clim 26:2247–2267.  https://doi.org/10.1175/JCLI-D-12-00150.1 CrossRefGoogle Scholar
  15. Eppley R (1972) Temperature and phytoplankton growth in the sea. Fish Bull 70:1063–1085Google Scholar
  16. Fu W, James TR, Moore JK (2016) Climate change impacts on net primary production (NPP) and export production (EP) regulated by increasing stratification and phytoplankton community structure in the CMIP5 models. Biogeosciences 13:5151–5170CrossRefGoogle Scholar
  17. Gent PR, Danabasoglu G, Donner LJ, Holland MM, Hunke EC, Jayne SR, Lawrence DM, Neale RB, Rasch PJ, Vertenstein M, Worley PH, Yang Z-L, Zhang M (2011) The community climate system model version 4. J Clim 24:4973–4991CrossRefGoogle Scholar
  18. Giorgetta MA, Jungclaus JH, Reick CH, Legutke S, Brovkin V, Crueger T, Esch M, Fieg K, Glushak K, Gayler V, Haak H, Hollweg H-D, Ilyina T, Kinne S, Kornblueh L, Matei D, Mauritsen T, Mikolajewicz U, Mueller WA, Notz D, Raddatz T, Rast S, Redler R, Roeckner E, Schmidt H, Schnur R, Segschneider J, Six K, Stockhause M, Wegner J, Widmann H, Wieners K-H, Claussen M, Marotzke J, Stevens B (2013) Climate change from 1850 to 2100 in MPI-ESM simulations for the coupled model intercomparison project 5. J Adv Model Earth Syst 5:572–597.  https://doi.org/10.1002/jame.20038 CrossRefGoogle Scholar
  19. HadGEM2 Development Team, Martin GM, Bellouin N, Collins WJ, Culverwell ID, Halloran PR, Hardiman SC, Hinton TJ, Jones CD, McDonald RE, McLaren AJ, O’Connor FM, Roberts MJ, Rodriguez JM, Woodward S, Best MJ, Brooks ME, Brown AR, Butchart N, Dearden C, Derbyshire SH, Dharssi I, Doutriaux-Boucher M, Edwards JM, Falloon PD, Gedney N, Gray LJ, Hewitt HT, Hobson M, Huddleston MR, Hughes J, Ineson S, Ingram WJ, James PM, Johns TC, Johnson CE, Jones A, Jones CP, Joshi MM, Keen AB, Liddicoat S, Lock AP, Maidens AV, Manners JC, Milton SF, Rae JGL, Ridley JK, Sellar A, Senior CA, Totterdell IJ, Verhoef A, Vidale PL, Wiltshire A (2011) The HadGEM2 family of Met Office Unified Model climate configurations. Geosci Model Dev 4:723–757.  https://doi.org/10.5194/gmd-4-723-2011 CrossRefGoogle Scholar
  20. Hashioka T, Vogt M, Yamanaka Y, Le Quere C, Buitenhuis ET, Aita MN, Alvain S, Bopp L, Hirata T, Lima I, Sailley S, Doney SC (2013) Phytoplankton competition during the spring bloom in four plankton functional type models. Biogeosciences 10:6833–6850.  https://doi.org/10.5194/bg-10-6833-2013 CrossRefGoogle Scholar
  21. Hoegh-Guldberg O, Bruno JF (2010) The impact of climate change on the world’s marine ecosystems. Science 328(5985):1523–1528CrossRefGoogle Scholar
  22. Hofmann GE, Barry JP, Edmunds PJ, Gates RD, Hutchins DA, Klinger T, Sewell MA (2010) The effects of ocean acidification on calcifying organisms in marine ecosystems: an organism to ecosystem perspective. Ann Rev Ecol Evol Syst 41:127–147CrossRefGoogle Scholar
  23. Ilyina T, Six KD, Segschneider J, Maier-Reimer E, Li H, Nunez-Riboni I (2013) The global ocean biogeochemistry model HAMOCC: model architecture and performance as component of the MPI-earth system model in different CMIP5 experimental realizations. J Adv Model Earth Syst 5:287–315.  https://doi.org/10.1029/2012MS000178 CrossRefGoogle Scholar
  24. Khatiwala S, Primeau F, Hall T (2009) Reconstruction of the history of anthropogenic CO2 concentrations in the ocean. Nature 462:346–349.  https://doi.org/10.1038/nature08526 CrossRefGoogle Scholar
  25. Laufkötter C, Vogt M, Gruber N, Aita-Noguchi M, Aumont O, Bopp L, Buitenhuis E, Doney S, Dunne J, Hashioka T, Hauck J, Hirata T, John J, Le Quéré C, Lima ID, Nakano H, Séférian R, Totterdell I, Vichi M, Völker C (2015) Drivers and uncertainties of future global marine primary production in marine ecosystem models. Biogeosciences 12:6955–6984.  https://doi.org/10.5194/bg-12-6955-2015 CrossRefGoogle Scholar
  26. Leung S, Cabré A, Marinov I (2015) A latitudinally banded phytoplankton response to 21st century climate change in the Southern Ocean across the CMIP5 model suite. Biogeosciences 12:5715–5734.  https://doi.org/10.5194/bg-12-5715-2015 CrossRefGoogle Scholar
  27. Lindsay K, Bonan GB, Doney SC, Hoffmann FM, Lawrence DM, Long MC, Mahowald NM, Moore JK, Randerson JT, Thornton PE (2014) Preindustrial control and 20th century carbon cycle experiments with the earth system model CESM1—(BGC). J Clim 27:8981–9005CrossRefGoogle Scholar
  28. Marinov I, Doney SC, Lima ID, Lindsay K, Moore JK, Mahowald N (2013) North-South asymmetry in the modeled phytoplankton community response to climate change over the 21st century. Glob Biogeochem Cycle 27:GB004599.  https://doi.org/10.1002/2013gb004599 CrossRefGoogle Scholar
  29. Misumi K, Lindsay K, Moore JK, Doney SC, Bryan FO, Tsumune D, Yoshida Y (2014) The iron budget in ocean surface waters in the 20th and 21st centuries: projections by the community earth system model version 1. Biogeosciences 11:33–55.  https://doi.org/10.5194/bg-11-33-2014 CrossRefGoogle Scholar
  30. Moore JK, Lindsay K, Doney SC, Long MC, Misumi K (2013) Marine ecosystem dynamics and biogeochemical cycling in the community earth system model [CESM1 (BGC)]: comparison of the 1990 s with the 2090s under the RCP4.5 and RCP8.5 Scenarios. J Clim 26:9291–9312.  https://doi.org/10.1175/JCLI-D-12-00566.1 CrossRefGoogle Scholar
  31. Palmer JR, Totterdell IJ (2001) Production and export in a global ecosystem model. Deep-Sea Res I 48:1169–1198CrossRefGoogle Scholar
  32. Parekh P, Follows MJ, Boyle EA (2005) decoupling of iron and phosphate in the global ocean. Glob Biogeochem Cycles 19:GB2020CrossRefGoogle Scholar
  33. Plattner G, Joos F, Stocker T (2002) Revision of the global carbon budget due to changing air-sea oxygen fluxes. Glob Biogeochem Cycle 16:1096–1108.  https://doi.org/10.1029/2001GB001746 CrossRefGoogle Scholar
  34. Reusch TBH, Boyd PW (2013) Experimental evolution meets marine phytoplankton. Evolution 67(7):1849–1859CrossRefGoogle Scholar
  35. Rosati A, Miyakoda K (1988) A general circulation model for upper ocean simulation. J Phys Oceanogr 18:1601–1626CrossRefGoogle Scholar
  36. Sabine CL, Feely RA, Gruber N, Key RM, Lee K, Bullister JL, Wanninkhof R, Wong CS, Wallace DWR, Tilbrook B, Millero FJ, Peng T-H, Kozyr A, Ono T, Rios AF (2004) The oceanic sink for anthropogenic CO2. Science 305:367–371CrossRefGoogle Scholar
  37. Sailley S, Vogt M, Doney S, Aita M, Bopp L, Buitenhuis E, Hashioka T, Lima I, Le Quere C, Yamanaka Y (2013) 2013: comparing food web structures and dynamics across a suite of global marine ecosystem models. Ecol Modell 261–262:43–57.  https://doi.org/10.1016/j.ecolmodel.2013.04.006 CrossRefGoogle Scholar
  38. Sarmiento JL, Gruber N (2006) Ocean biogeochemical dynamics. Princeton University Press, PrincetonGoogle Scholar
  39. Sarmiento JL, Slater R, Barber R, Bopp L, Doney SC, Hirst A, Kleypas J, Matear R, Mikolajewicz U, Monfray P, Soldatov V, Spall S, Stouffer R (2004) Response of ocean ecosystems to climate warming. Glob Biogeochem Cycle 18:GB3003.  https://doi.org/10.1029/2003gb002134 CrossRefGoogle Scholar
  40. Schmittner A, Oschlies A, Matthews HD, Galbraith ED (2008) Future changes in climate, ocean circulation, ecosystems, and biogeochemical cycling simulated for a business-as-usual CO2 emission scenario until year 4000 AD. Glob Biogeochem Cycle 22:GB1013.  https://doi.org/10.1029/2007gb002953 CrossRefGoogle Scholar
  41. Sherman E, Moore JK, Primeau F, Tanouye D (2016) Temperature influence on phytoplankton community growth rates. Glob Biogeochem Cycle 30:550–559.  https://doi.org/10.1002/2015GB005272 CrossRefGoogle Scholar
  42. Steinacher M, Joos F, Frolicher TL, Bopp L, Cadule P, Cocco V, Doney SC, Gehlen M, Lindsay K, Moore JK, Schneider B, Segschneider J (2010) Projected 21st century decrease in marine productivity: a multi-model analysis. Biogeosciences 7:979–1005.  https://doi.org/10.5194/bg-7-979-2010 CrossRefGoogle Scholar
  43. Stocker TF, Qin D, Plattner G-K, Tignor M, Allen SK, Boschung J, Nauels A, Xia Y, Bex V, Midgley PM (2013) the physical science basis. Working Group I Contribution to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change, Cambridge, New York, USAGoogle Scholar
  44. Tagliabue A, Mtshali T, Aumont O, Bowie AR, Klunder MB, Roychoudhury AN, Swart S (2012) A global compilation of dissolved iron measurements: focus on distributions and processes in the Southern Ocean. Biogeosciences 9:2333–2349.  https://doi.org/10.5194/bg-9-2333-2012 CrossRefGoogle Scholar
  45. Taucher J, Oschlies A (2011) Can we predict the direction of marine primary production change under global warming? Geophys Res Lett 38:1–6.  https://doi.org/10.1029/2010GL045934 CrossRefGoogle Scholar
  46. Taylor KE, Stouffer RJ, Meehl GA (2012) An Overview of CMIP5 and the experiment design. B Am Meteorol Soc 93:485–498.  https://doi.org/10.1175/BAMS-D-11-00094.1 CrossRefGoogle Scholar
  47. Thomas MK, Kremer CT, Klausmeier CA, Litchman E (2012) A global pattern in thermal adaptation in marine phytoplankton. Science 338:1085–1088.  https://doi.org/10.1126/science.1224836 CrossRefGoogle Scholar
  48. Tjiputra JF, Roelandt C, Bentsen M, Lawrence DM, Lorentzen T, Schwinger J, Seland Ø, Heinze C (2013) Evaluation of the carbon cycle components in the Norwegian Earth System Model (NorESM). Geosci Model Dev 6:301–325.  https://doi.org/10.5194/gmd-6-301-2013 CrossRefGoogle Scholar
  49. Trenberth KE, Fasullo JT (2010) Simulation of present-day and twenty-first-century energy budgets of the southern oceans. J Clim 23(2):440–454CrossRefGoogle Scholar
  50. Tsushima Y, Ringer MA, Webb MJ, Williams KD (2013) Quantitative evaluation of the seasonal variations in climate model cloud regimes. Clim Dyn 41(9–10):2679–2696CrossRefGoogle Scholar
  51. Vogt M, Hashioka T, Payne MR, Buitenhuis ET, Le Quere C, Alvain S, Aita MN, Bopp L, Doney SC, Hirata T, Lima I, Sailley S, Yamanaka Y (2013) The distribution, dominance patterns and ecological niches of plankton functional types in dynamic green ocean models and satellite estimates. Biogeosci Discuss 10:17193–17247.  https://doi.org/10.5194/bgd-10-17193-2013 CrossRefGoogle Scholar
  52. Yasunaka S, Nojiri Y, Hashioka T, Yoshikawa C, Kodama T, Nakaoka SI, Chiba F, Hashihama M, Wakita K, Furuya D, Sasano SA, Murata H, Uchida H, Aoyama M (2018) Basin-scale distribution of NH4 + and NO2 in the Pacific Ocean. J Oceanogr 74(1):1–11CrossRefGoogle Scholar

Copyright information

© The Oceanographic Society of Japan and Springer Nature Singapore Pte Ltd. 2019

Authors and Affiliations

  1. 1.Atmosphere and Ocean Research Institute, The University of TokyoKashiwaJapan

Personalised recommendations