Skip to main content
Log in

Community patterns and temporal variation of picoeukaryotes in response to changes in the Yellow Sea Warm Current

  • Original Article
  • Published:
Journal of Oceanography Aims and scope Submit manuscript

Abstract

Picoeukaryotes are important members of the surface ocean microbial community with high diversity and significant temporal and spatial variations in community composition. Little is known about the picoeukaryotic biodiversity and community in the Yellow Sea, where hydrologic conditions are very different with the influence of the Yellow Sea Warm Current (YSWC). Using Illumina high throughput sequencing targeting 18S rDNA, we investigated the composition of picoeukaryotes at a permanent monitoring site in the central Yellow Sea from 2011 to 2013. Alveolata, Stramenopiles, and Archaeplastida were the main super groups found. Prasinophytes were dominant in N-YSWC (not influenced by the YSWC) samples whilst YSWC (influenced by the YSWC) samples were dominated by different groups, such as MALV-II (novel marine Alveolata), MAST-3, MAST-4 (novel marine Stramenopiles), and Dictyochophyceae. N-YSWC samples were grouped together in nMDS (non-metric multidimensional scaling) using the Bray–Curtis method. Distances between each two YSWC samples were greater. Based on indicator operational taxonomic unit (OTU) analysis (IOA), indicator species of the YSWC were represented by Pseudochattonella farcimen, Florenciella parvula within the class Dictyochophyceae, and Phaeocystis cordata within the class Prymnesiophyceae. The findings in our study suggest that picoeukaryotic communities in the central Yellow Sea differ temporally in response to changes in the YSWC.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Acosta F, Ngugi DK, Stingl U (2013) Diversity of picoeukaryotes at an oligotrophic site off the Northeastern Red Sea Coast. Aquat Biosyst 9(1):16

    Article  Google Scholar 

  • Amaral-Zettler LA (2013) Eukaryotic diversity at pH extremes. Front Microbiol 3(2):441

    Google Scholar 

  • Amato KR, Yeoman CJ, Kent A et al (2013) Habitat degradation impacts black howler monkey (Alouatta pigra) gastrointestinal microbiomes. ISME J 7(7):1344–1353

    Article  Google Scholar 

  • Anderson MJ, Gorley RN, Clarke KR (2008) PERMANOVA+ for PRIMER Guide to software and statistical methods. PRIMER-E Ltd., Plypouth

    Google Scholar 

  • Caron DA, Countway PD (2009) Hypotheses on the role of the protistan rare biosphere in a changing world. Aquat Microb Ecol 57:227–238

    Article  Google Scholar 

  • Chambouvet A, Morin P, Marie D, Guillou L (2008) Control of toxic marine dinoflagellate blooms by serial parasitic killers. Science 322:1254–1256

    Article  Google Scholar 

  • Christaki U, Kormas KA, Genitsaris S et al (2014) Winter–summer succession of unicellular eukaryotes in a meso-eutrophic coastal system. Microb Ecol 67:13–23

    Article  Google Scholar 

  • Clarke KR, Gorley RH (2006) PRIMER-6 user manual/tutorial. PRIMER-E Ltd., Plymouth

    Google Scholar 

  • Countway PD, Gast RJ, Saval P et al (2005) Protistan diversity estimates based on 18S rDNA from seawater incubations in the western North Atlantic. J Eukaryot Microbiol 52:95–106

    Article  Google Scholar 

  • Countway PD, Vigil PD, Schnetzer A, Moorthi SD, Carona DA (2010) Seasonal analysis of protistan community structure and diversity at the USC Microbial Observatory (San Pedro Channel, North Pacific Ocean). Limnol Oceanogr 55:2381–2396

    Article  Google Scholar 

  • Cui MC, Hu DX, Mo J (2004) Seasonality and causes of the Yellow Sea Warm Current. Chin J Oceanol Limnol 22:265–270

    Article  Google Scholar 

  • de Vargas C, Audic S, Henry N, Decelle J et al (2015) Eukaryotic plankton diversity in the sunlit ocean. Science 348:29223618–29223625

    Article  Google Scholar 

  • Dittami SM, Riisberg I, John U (2012) Analysis of expressed sequence tags from the marine microalga Pseudochattonella farcimen (Dictyochophyceae). Protist 163:143–161

    Article  Google Scholar 

  • Dittami SM, Hostyeva V, Egge ES et al (2013) Seasonal dynamics of harmful algae in outer Oslofjorden monitored by microarray, qPCR, and microscopy. Environ Sci Pollut Res 20:6719–6732

    Article  Google Scholar 

  • Dixon P (2003) VEGAN, a package of R functions for community ecology. J Veg Sci 14(6):927–930

    Article  Google Scholar 

  • Dufrêne M, Legendre P (1997) Species assemblages and indicator species: the need for a flexible asymmetrical approach. Ecol Monogr 67:345–366

    Google Scholar 

  • Duret MT, Pachiadaki MG, Stewart FJ et al (2015) Size-fractionated diversity of eukaryotic microbial communities in the Eastern Tropical North Pacific oxygen minimum zone. FEMS Microbiol Ecol 91:1–42

    Article  Google Scholar 

  • Edgcomb V, Orsi W, Bunge J et al (2011) Protistan microbial observatory in the Cariaco Basin, Caribbean. I. Pyrosequencing vs Sanger insights into species richness. ISME J 5:1344–1356

    Article  Google Scholar 

  • Edvardsen B, Eikrem W, Shalchian-Tabrizi K, Riisberg I et al (2007) Verrucophora farcimen gen. et sp. nov. (Dictyochophyceae, Heterokonta)—a bloom-forming ichthyotoxic flagellate from the Skagerrak. Nor J Phycol 43:1054–1070

    Article  Google Scholar 

  • Edwards M, Richardson AJ (2004) Impact of climate change on marine pelagic phenology and trophic mismatch. Nature 430:881–884

    Article  Google Scholar 

  • Egge ES, Johannessen TV, Andersen T et al (2015) Seasonal diversity and dynamics of haptophytes in the Skagerrak, Norway, explored by high-throughput sequencing. Mol Ecol 24:3026–3042

    Article  Google Scholar 

  • Etkrem W, Romari K, Latasa M et al (2004) Florenciella parvula gen. et sp. nov. (Dictyochophyceae, Heterokontophyta), a small flagellate isolated from the English Channel. Phycologia 43:658–668

    Article  Google Scholar 

  • Guillou L, Viprey M, Chambouvet A, Welsh RM, Kirkham AR, Massana R, Scanlan DJ, Worden AZ (2008) Widespread occurrence and genetic diversity of marine parasitoids belonging to Syndiniales (Alveolata). Environ Microbiol 10:3349–3365

    Article  Google Scholar 

  • Hillis DM, Dixon MT (1991) Ribosomal DNA: molecular evolution and phylogenetic inference. Q Rev Biol 66:441–453

    Article  Google Scholar 

  • Hu HG, Wan ZW, Yuan YI (2004) Simulation of seasonal variation of phytoplankton in the southern Huanghai (Yellow) Sea and analysis on its influential factors. Acta Oceanol Sin 26:74–88

    Google Scholar 

  • Hugerth LW, Muller EE, Hu YO et al (2014) Systematic design of 18S rRNA gene primers for determining eukaryotic diversity in microbial consortia. PLoS One 9:e95567

    Article  Google Scholar 

  • Kilias ES, Nothig E, Wolf C, Metfies K (2014) Picoeukaryote plankton composition off West Spitsbergen at the entrance to the Arctic Ocean. J Eukaryot Microbiol 61(6):569–579

    Article  Google Scholar 

  • Kulk G, van de Poll W, Buma AG (2012) Temperature-dependent growth and photophysiology of prokaryotic and eukaryotic oceanic picophytoplankton. Mar Ecol Prog Ser 466:43–55

    Article  Google Scholar 

  • Lanier W, Moustafa A, Bhattacharya D, Comeron JM (2008) EST analysis of Ostreococcus lucimarinus, the most compact eukaryotic genome, shows an excess of introns in highly expressed genes. PLoS One 3:e2171

    Article  Google Scholar 

  • Li WKW (1994) Primary production of prochlorophytes, cyanobacteria, and eucaryotic ultraphytoplankton: measurements from flow cytometric sorting. Limnol Oceanogr 39:169–175

    Article  Google Scholar 

  • Lin C, Ning XR, Su JL, Lin Y, Xu B (2005) Environmental changes and the responses of the ecosystems of the Yellow Sea during 1976–2000. J Marine Syst 55:223–234

    Article  Google Scholar 

  • Liu X, Huang BQ, Huang Q, Wang L (2015) Seasonal phytoplankton response to physical processes in the southern Yellow Sea. J Sea Res 95:45–55

    Article  Google Scholar 

  • Logares R, Audic R, Santini S (2012) Diversity patterns and activity of uncultured marine heterotrophic flagellates unveiled with pyrosequencing. ISME J 6:1823–1833

    Article  Google Scholar 

  • Logares R, Audic S, Bass D et al (2014) Patterns of rare and abundant marine microbial eukaryotes. Curr Biol 24:1–9

    Article  Google Scholar 

  • Lovejoy C, Vincent WF, Bonilla S et al (2007) Distribution, phylogeny and growth of cold-adapted picoprasinophytes in arctic seas. J Phycol 43:78–89

    Article  Google Scholar 

  • Lü LG, Wang X, Wang H et al (2013) The variations of zooplankton biomass and their migration associated with the Yellow Sea Warm Current. Cont Shelf Res 64:10–19

    Article  Google Scholar 

  • Lόpez-Garcίa P, Rodríguez-Valera F, Pedrós C, Moreira D (2001) Unexpected diversity of small eukaryotes in deep-sea Antarctic plankton. Nature 409:603–607

    Article  Google Scholar 

  • Mangot JF, Domaizon I, Taib N et al (2013) Short-term dynamics of diversity patterns: evidence of continual reassembly within lacustrine small eukaryotes. Environ Microbiol 15:1745

    Article  Google Scholar 

  • Massana R (2011) Eukaryotic picoplankton in surface oceans. Annu Rev Microbiol 65:91–110

    Article  Google Scholar 

  • Massana R, Castresana J, Balagué V et al (2004) Phylogenetic and ecological analysis of novel marine stramenopiles. Appl Environ Microb 70:3528–3534

    Article  Google Scholar 

  • Medlin LK, Metfies K, Mehl H, Wiltshire K, Valentin K (2006) Picoeukaryotic plankton diversity at the Helgoland time series site as assessed by three molecular methods. Microb Ecol 52:53–71

    Article  Google Scholar 

  • Melinda PS, Sebastian S, Adam M et al (2016) Abundance and biogeography of picoprasinophyte ecotypes and other phytoplankton in the Eastern North Pacific Ocean. Appl Environ Microbiol 82(6):1693–1705

    Article  Google Scholar 

  • Merriam DF (1978) Computational methods of multivariate analysis in physical geography. Earth Sci Rev 14(2):173–174

    Article  Google Scholar 

  • Moon-van der Staay SY, de Wachter R, Vaulot D (2001) Oceanic 18S rDNA sequences from picoplankton reveal unsuspected eukaryotic diversity. Nature 409:607–610

    Article  Google Scholar 

  • Moreau H, Verhelst B, Couloux A et al (2012) Gene functionalities and genome structure in Bathycoccus prasinos reflect cellular specializations at the base of the green lineage. Genome Biol 13:R74

    Article  Google Scholar 

  • Not F, Latasa M, Marie D, Cariou T, Vaulot D, Simon N (2004) A single species, Micromonas pusilla (Prasinophyceae), dominates the eukaryotic picoplankton in the Western English Channel. Appl Environ Microb 70:4064–4072

    Article  Google Scholar 

  • Not F, Latasa M, Scharek R et al (2008) Protistan assemblages across the Indian Ocean, with a specific emphasis on the picoeukaryotes. Deep Sea Res Pt I 55:1456–1473

    Article  Google Scholar 

  • O’Kelly CJ, Sieracki ME, Thier EC, Hobson IC (2003) A transient bloom of Ostreococcus (Chlorophyta, Prasinophyceae) in West Neck Bay, Long Island, New York. J Phycol 39:850–854

    Article  Google Scholar 

  • Palenik B, Grimwoodc J, Aerts A et al (2007) The tiny eukaryote Ostreococcus provides genomic insights into the paradox of plankton speciation. Proc Natl Acad Sci USA 104:7705–7710

    Article  Google Scholar 

  • Park MG, Yih W, Coats DW (2004) Parasites and phytoplankton, with special emphasis on dinoflagellate infections. J Eukaryot Microbiol 51:145–155

    Article  Google Scholar 

  • Pierce RW, Turner JT (2009) Ecology of planktonic ciliates in marine food webs. Rev Aquat Sci 6:139–181

    Google Scholar 

  • Pomeroy LR, Williams PJI, Azam F, Hobbie JE (2007) The microbial loop. Oceanography 20:28–33

    Article  Google Scholar 

  • Potvin M, Lovejoy C (2009) PCR-Based diversity estimates of artificial and environmental 18S rRNA gene libraries. J Eukaryot Microbiol 56(2):174–181

    Article  Google Scholar 

  • Rocke E, Jing H, Liu H (2013) Phylogenetic composition and distribution of picoeukaryotes in the hypoxic northwestern coast of the Gulf of Mexico. MicrobiolOpen 2:130–143

    Article  Google Scholar 

  • Rodríguez-Martínez R, Rocap G, Logares R, Romac S, Massana R (2012) Low evolutionary diversification in a widespread and abundant uncultured protist (MAST-4). Mol Biol Evol 29:1393–1406

    Article  Google Scholar 

  • Rodríguez-Martínez R, Rocap G, Salarza G, Massana R (2013) Biogeography of the uncultured marine picoeukaryote MAST-4: temperature-driven distribution patterns. ISME J 7:1531–1541

    Article  Google Scholar 

  • Shi XL, Lepère C, Scanlan DJ, Vaulot D (2011) Plastid 16S rRNA gene diversity among eukaryotic picophytoplankton sorted by flow cytometry from the South Pacific Ocean. PLoS One 6(4):e18979

    Article  Google Scholar 

  • Skjelbred B, Edvardsen B, Andersen T (2013) Environmental optima for seven strains of Pseudochattonella (Dictyochophyceae, Heterokonta). J Phycol 49:54–60

    Article  Google Scholar 

  • Song DX, Bao XW, Wang XH et al (2009) The inter-annual variability of the Yellow Sea Warm Current surface axis and its influencing factors. Chinese J Oceanol Limnol 27(3):607–613

    Article  Google Scholar 

  • Stoeck T, Epstein S (2003) Novel eukaryotic lineages inferred from small sub-unit rRNA analyses of oxygen-depleted marine environments. Appl Environ Microbiol 69:2657–2663

    Article  Google Scholar 

  • Stoecker DK (1999) Mixotrophy among Dinoflagellates. J Eukaryn Microbiol 46:397–401

    Article  Google Scholar 

  • Tang QS, Su JL, Zhang J (2013) Spring blooms and the ecosystem processes: the case study of the Yellow Sea. Deep Sea Res Pt II 97:1–3

    Article  Google Scholar 

  • Vaulot D, Eikrem W, Viprey M, Moreau H (2008) The diversity of small eukaryotic phytoplankton (≤3 μm) in marine ecosystems. FEMS Microbiol Rev 32:795–820

    Article  Google Scholar 

  • Worden A (2006) Picoeukaryote diversity in coastal waters of the Pacific Ocean. Aquat Microb Ecol 43:165–175

    Article  Google Scholar 

  • Worden AZ, Nolan JK, Palenik B (2004) Assessing the dynamics and ecology of marine picophytoplankton: the importance of the eukaryotic component. Limnol Oceanogr 49:168–179

    Article  Google Scholar 

  • Worden AZ, Lee JH, Mock T et al (2009) Green evolution and dynamic adaptations revealed by genomes of the marine picoeukaryotes Micromonas. Science 423:268–272

    Article  Google Scholar 

  • Wu W, Huang B, Liao Y, Sun P (2014) Picoeukaryotic diversity and distribution in the subtropical-tropical South China Sea. FEMS Microbiol Ecol 89:563–579

    Article  Google Scholar 

  • Zhu F, Massana R, Not F et al (2005) Mapping of picoeucaryotes in marine ecosystems with quantitative PCR of the 18S rRNA gene. FEMS Microbiol Ecol 52:79–92

    Article  Google Scholar 

  • Zingone A, Chrétiennot-Dinet MJ, Lange M, Medlin L (1999) Morphological and genetic characterization of Phaeocystis Cordata and P. Jahnii (Prymnesiophyceae), two new species from the Mediterrranean Sea. J Phycol 35:1322–1337

    Article  Google Scholar 

Download references

Acknowledgements

This study was supported by the National Natural Foundation Science of China (NFSC) (Grants 31500339, 41676178, 41076088); Fundamental Research Funds for the Central University of Ocean University of China (Grant Numbers 201512013, 201564010 and 201512008). We are grateful to the captain and crews of the RV ‘Dong Fang Hong 2’. The authors would like to thank the editor and anonymous reviewers for their constructive comments.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Min Wang or Yong Jiang.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOC 31 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Xu, Z., Song, X., Wang, M. et al. Community patterns and temporal variation of picoeukaryotes in response to changes in the Yellow Sea Warm Current. J Oceanogr 73, 687–699 (2017). https://doi.org/10.1007/s10872-017-0425-1

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10872-017-0425-1

Keywords

Navigation