Journal of Oceanography

, Volume 73, Issue 5, pp 647–667 | Cite as

Comparison of carbon cycle between the western Pacific subarctic and subtropical time-series stations: highlights of the K2S1 project

  • Makio C. HondaEmail author
  • Masahide Wakita
  • Kazuhiko Matsumoto
  • Tetsuichi Fujiki
  • Eko Siswanto
  • Kosei Sasaoka
  • Hajime Kawakami
  • Yoshihisa Mino
  • Chiho Sukigara
  • Minoru Kitamura
  • Yoshikazu Sasai
  • Sherwood L. Smith
  • Taketo Hashioka
  • Chisato Yoshikawa
  • Katsunori Kimoto
  • Shuichi Watanabe
  • Toru Kobari
  • Toshi Nagata
  • Koji Hamasaki
  • Ryo Kaneko
  • Mario Uchimiya
  • Hideki Fukuda
  • Osamu Abe
  • Toshiro Saino
Original Article


A comparative study of ecosystems and biogeochemistry at time-series stations in the subarctic gyre (K2) and subtropical region (S1) of the western North Pacific Ocean (K2S1 project) was conducted between 2010 and 2013 to collect essential data about the ecosystem and biological pump in each area and to provide a baseline of information for predicting changes in biologically mediated material cycles in the future. From seasonal chemical and biological observations, general oceanographic settings were verified and annual carbon budgets at both stations were determined. Annual mean of phytoplankton biomass and primary productivity at the oligotrophic station S1 were comparable to that at the eutrophic station K2. Based on chemical/physical observations and numerical simulations, the likely “missing nutrient source” was suggested to include regeneration, meso-scale eddy driven upwelling, meteorological events, and eolian inputs in addition to winter vertical mixing. Time-series observation of carbonate chemistry revealed that ocean acidification (OA) was ongoing at both stations, and that the rate of OA was faster at S1 than at K2 although OA at K2 is more critical for calcifying organisms.


Time-series stations K2 and S1 Western Pacific Primary productivity Carbon budget Missing source of nutrients Ocean acidification 



Owing to cooperative multidisciplinary research with scientists from various fields, a great synergy of effects was obtained. We acknowledge all of the scientists and students who participated in this project. During the K2S1 project cruises, sea conditions were not always calm. However, most of the scientific cruises and onboard observations were conducted successfully and safely with limited ship time. We appreciate the captains, ship crews, and marine technicians from the Global Ocean Development Incorporation (GODI) and Marine Works Japan Ltd (MWJ) for their dedicated and enthusiastic support. We deeply appreciate anonymous reviewers and guest editors of the K2S1 special issue including Drs. Joji Ishizaka, Hiroaki Saito and Eitarou Oka.

Supplementary material

10872_2017_423_MOESM1_ESM.doc (98 kb)
Supplementary material 1 (DOC 98 kb)


  1. Andreev A, Watanabe S (2002) Temporal changes in dissolved oxygen of the intermediate water in the subarctic North Pacific. Geophys Res Lett 29(14):1680. doi: 10.1029/2002GL015021 CrossRefGoogle Scholar
  2. Arrigo KR (2007) Carbon cycle: marine manipulation. Nature 450(22):491–492CrossRefGoogle Scholar
  3. Babin SM, Carton JA, Dickey TD, Wiggert JD (2004) Satellite evidence of hurricane-induved phytoplankton blooms in an oceanic desert. J Geophys Res 109:C03043. doi: 10.1029/2003JC001938 CrossRefGoogle Scholar
  4. Baker AR, Croot PL (2008) Atmospheric and marine controls on aerosol iron solubility in seawater. Mar Chem. doi: 10.1016/j.marchem.2008.09.003 Google Scholar
  5. Bakker DCE, Pfeil B, Smith K, Hankin S, Olsen A, Alin SR, Cosca C, Harasawa S, Kozyr A, Nojiri Y, O’Brien KM, Schuster U, Telszewski M, Tilbrook B, Wada C, Akl J, Barbero L, Bates NR, Boutin J, Bozec Y, Cai WJ, Castle RD, Chavez FP, Che L, Chierici M, Currie K, De Baar HJW, Evans W, Feely RA, Fransson A, Gao Z, Hales B, Hardman-Mountford NJ, Hoppema M, Huang WJ, Hunt CW, Huss B, Ichikawa T, Johannessen T, Jones EM, Jones S, Jutterstrøm S, Kitidis V, Körtzinger A, Landschützer P, Lauvset SK, Lefèvre N, Manke AB, Mathis JT, Merlivat L, Metzl N, Murata A, Newberger T, Omar AM, Ono T, Park GH, Paterson K, Pierrot D, Ríos AF, Sabine CL, Saito S, Salisbury J, Sarma VVSS, Schlitzer R, Sieger R, Skjelvan I, Steinhoff T, Sullivan KF, Sun H, Sutton AJ, Suzuki T, Sweeney C, Takahashi T, Tjiputra J, Tsurushima N, Van Heuven SMAC, Vandemark D, Vlahos P, Wallace DWR, Wanninkhof R, Watson AJ (2014) An update to the Surface Ocean CO2 Atlas (SOCAT version 2). Earth Syst Sci Data 6:69–90. doi: 10.5194/essd-6-69-2014 CrossRefGoogle Scholar
  6. Beherenfeld MJ, Falkowski PG (1997) A consumers guide to phytoplankton primary production models. Limnol Oceanogr 42:1479–1491CrossRefGoogle Scholar
  7. Bopp L, Monfray P, Aumont O, Dufresne J-L, Treut HL, Madec G, Terray L, Orr JC (2001) Potential impact of climate change on marine export production. Glob Biogeochem Cycles 15:81–99CrossRefGoogle Scholar
  8. Bopp L, Aumont O, Cadule P, Alvain S, Gehlen M (2005) Response of diatoms distribution to global warming and potential implications: a global model study. Geophys Res Lett 32:L19606. doi: 10.1029/2005GL023653 CrossRefGoogle Scholar
  9. Bopp L, Resplandy Orr JC, Doney SC, Dunne JP, Gehlen M, Halloran P, Heinze C, Ilyina T, Seferian R, Tjiputra J, Vichi M (2013) Multiple stressors of ocean ecosystems in the 21st century: projections with CMIP5 models. Biogeosci 10:6115–6245. doi: 10.5194/bg-10-6225-2013 CrossRefGoogle Scholar
  10. Boyd PW, Lennartz ST, Glover DM, Doney SC (2015) Biological ramifications of climate-change-mediated oceanic multi-stressors. Nature climate change 5:71–79. doi: 10.1038/NCLIMATE2441 CrossRefGoogle Scholar
  11. Buesseler KO, Lamborg CH, Boyd PW, Lam PJ, Trull TW, Bidigare RR, Bishop JKB, Casciotti KL, Dehairs F, Elskens M, Honda MC, Karl DM, Siegel DA, Silver MW, Steinberg DK, Valdes J, Mooy BV, Wilson S (2007) Revisiting carbon flux through the ocean’s twilight zone. Science 316:567–570CrossRefGoogle Scholar
  12. Buesseler KO, Trull TW, Steinberg DK, Silver MW, Siegel DA, Saitoh S, Lamborg CH, Lam PJ, Karl DM, Jiao NZ, Honda MC, Elskens M, Dehairs F, Brown SL, Boyd PW, Bishop JKB, Bidigare RR (2008) VERTIGO (VERtical Transport In the Global Ocean): a study of particle sources and flux attenuation in the North Pacific. Deep-Sea Res 55(14–15):1522–1539Google Scholar
  13. Caron DA, Goldman JC (1990) Protozoan nutrient regeneration. In: Capriulo GM (ed) Ecology of marine protozoa. Oxford University Press, New York, pp 283–306Google Scholar
  14. Chiba S, Aita MN, Tadokoro K, Saino T, Sugisaki H, Nakata K (2008) From climate regime shift to lower-tropic level phenology: synthesis of recent progress in retrospective studies of the Western North Pacific. Progress Oceanogr 77:112–126. doi: 10.1016/j.pocean.2008.03.004 CrossRefGoogle Scholar
  15. Conway TJ, Masarie KA, Lang PM, Tans PP (2012) NOAA Greenhouse Gas Reference from Atmospheric Carbon Dioxide Dry Air Mole Fractions from the NOAA ESRL Carbon Cycle Cooperative Global Air Sampling Network Path:
  16. del Giorge PA, Cole JJ (2000) Bacteria energetics and growth efficiency. In: Kirchman DL (ed) Microbial ecology of the oceans, Wiley-Liss, Hoboken, vol 99, pp 289–325Google Scholar
  17. Denman KL, Pena MA (2002) The response of two coupled one-dimensional mixed layer/plankton ecosystem models to climate change in the NE subarctic Pacific Ocean. Deep Sea Res II 49:5739–5758CrossRefGoogle Scholar
  18. Deutsh C, Emerson S, Thompson L (2005) Fingerprints of climate change in North Pacific oxygen. Geophys Res Lett 32:L16604. doi: 10.1029/2005GL023190 CrossRefGoogle Scholar
  19. Dickson AG, Millero FJ (1987) A comparison of the equilibrium constants for the dissociation of carbonic acid in seawater media. Deep Sea Res Part A 34:1733–1743CrossRefGoogle Scholar
  20. Dlugokency EJ, Masarie KA, Lang PM, Tans PP (2014) NOAA Greenhouse Gas Reference from Atmospheric Carbon Dioxide Dry Air Mole Fractions from the NOAA ESRL Carbon Cycle Cooperative Global Air Sampling Network. Data Path:
  21. Doney SC (2006) Plankton in a warmer world. Nature 444:695–696CrossRefGoogle Scholar
  22. Dore JE, Lukas Sadler RDW, Church MJ, Karl DM (2009) Physical and biogeochemical modulation of ocean acidification in the central North Pacific. Proc Natl Acad Sci USA 106:12235–12240CrossRefGoogle Scholar
  23. Duce RA, LaRoche J, Altieri K, Arrigo KR, Baker AR, Capone DG, Cornell S, Dentener F, Galloway J, Ganeshram RS, Geider RJ, Jickells T, Kuypers MM, Langlois R, Liss PS, Liu SM, Middelburg JJ, Moore CM, Nickovic S, Oschlies A, Pedersen T, Prospero J, Schlitzer R, Seitzinger S, Sorensen LL, Uematsu M, Ulloa O, Voss M, Ward B, Zamora L (2008) Impacts of atmospheric anthropogenic nitrogen on the open ocean. Science 320:893–897CrossRefGoogle Scholar
  24. Egleston ES, Sabine CL, Morel FMM (2010) Revelle revisited: Buffer factors that quantify the response of ocean chemistry to changes in DIC and alkalinity. Global Biogeochem Cycles 24: GB1002 doi: 10.1029/2008GB003407
  25. Feely RA, Doney SC, Cooley SR (2009) Ocean acidification. Oceangr 22(4):36–47Google Scholar
  26. Feely RA, Sabine CL, Byrne RH, Millero FJ, Dickson AG, Wanninkhof R, Murata A, Miller LA (2012) Decadal changes in the aragonite and calcite saturation state of the Pacific Ocean. Global Biogeochem Cycles. GB3001. doi: 10.1029/2011GB004157
  27. Fenchel T, Finlay BJ (1983) Respiration rates in heterotrophic free-living protozoa. Microb Ecol 9:99–122CrossRefGoogle Scholar
  28. Fujiki T, Matsumoto K, Mino Y, Sasaoka K, Wakita M, Kawakami H, Honda MC, Watanabe S, Saino T (2014) The seasonal cycle of phytoplankton community structure and photo-physiological state in the western subarctic gyre of the North Pacific. Limnol Oceanogr 59(3):887–900CrossRefGoogle Scholar
  29. Fukuda H, Ogawa H, Nagata T, Koike I (1998) Direct determination of carbon and nitrogen contents of natural bacterial assemblages in marine environments. Appl Environ Microbiol 64(9):3352–3358Google Scholar
  30. Giering SLC, Sanders R, Lampitt RS, Anderson TR, Tamburini C, Boutrif M, Zubkov MV, Marsay CM, Henson SA, Saw K, Cook K, Mayor DJ (2014) Reconciliation of the carbon budget in the ocean’s twilight zone. Nature 507:480–483. doi: 10.1038/nature13123 CrossRefGoogle Scholar
  31. Gnaiger E (1983) Calculation of energetic and biochemical equivalents of respiratory oxygen consumption. In: Gnaiger E, Forster H (eds) Polar organic oxugen sensors. Springer, Berlin, pp 337–345CrossRefGoogle Scholar
  32. Gregg WW, Ginoux P, O’Reilly JE, Casey NW (2003) Ocean primary production and climate: Global decadal changes. Geophys Res Lett 30 (15). doi: 10.1029/2003GL016889
  33. Harrison PJ, Boyd PW, Varela DE, Takeda S, Shiomoto A, Odate T (1999) Comparison of factors controlling phytoplankton productivity in the NE and NW Subarctic Pacific Gyres. Prog Oceanogr 43:205–234CrossRefGoogle Scholar
  34. Harrison PJ, Whitney FA, Tsuda A, Saito H, Tadokoro K (2004) Nutrient and plankton dynamics in the NE and NW gyres of the subarctic Pacific Ocean. J Oceanogr 60:93–117CrossRefGoogle Scholar
  35. Hashioka T, Sakamoto TT, Yamanaka Y (2009) Potential impact of global warming on North Pacific spring blooms projected by an eddy-permitting 3-D ocean ecosystem model. Geophys Res Lett 36:L20604. doi: 10.1029/2009GL038912 CrossRefGoogle Scholar
  36. Heinze C (2004) Simulating oceanic CaCO3 export production in the greenhouse. Geophys Res Lett 31:L16308. doi: 10.1029/2004GL0206613 CrossRefGoogle Scholar
  37. Honda MC (2003) Biological pump in the northwestern North Pacific. J Oceanogr 59:671–684CrossRefGoogle Scholar
  38. Honda MC, Watanabe S (2007) Utility of an automatic water sampler to observe seasonal variability in nutrients and DIC in the Northwestern North Pacific. J Oceanogr 63:349–362CrossRefGoogle Scholar
  39. Honda MC, Watanabe S (2010) Importance of biogenic opal as ballast of particulate organic carbon (POC) transport and existence of mineral ballast-associated and residual POC in the Western Pacific Subarctic Gyre. Geophys Res Lett 37:L02605. doi: 10.1029/2009GL041521 CrossRefGoogle Scholar
  40. Honda MC, Imai K, Nojiri Y, Hoshi F, Sugawara T, Kusakabe M (2002) The biological pump in the northwestern North Pacific based on fluxes and major components of particulate matter obtained by sediment trap experiments (1997-2000). Deep-Sea Res II 49:5595–5626CrossRefGoogle Scholar
  41. Honda MC, Kawakami H, Sasaoka K, Watanabe S, Dickey T (2006) Quick transport of primary produced organic carbon to the ocean interior. Geophys Res Lett 33: doi: 10.1029/2006GL026466
  42. Honda MC, Sasaoka K, Kawakami H, Matsumoto K, Watanabe S, Dickey TD (2009) Application of underwater optical data to estimation of primary productivity. Deep Sea Res I 56:2281–2292CrossRefGoogle Scholar
  43. Honda MC, Kawakami H, Watanabe S, Saino T (2013) Concentration and vertical flux of Fukushima-derived radiocesium in sinking particles from two sites in the Northwestern Pacific Ocean. Biogeosciences 10:3525–3534. doi: 10.5194/bg-10-3525-2013 CrossRefGoogle Scholar
  44. Honda MC, Kawakami H, Matsumoto K, Wakita M, Fujiki T, Mino Y, Sukigara C, Kobari T, Uchimiya M, Kaneko R, Saino T (2016) Comparison of sinking particles in the upper 200 m between subarctic station K2 and subtropical station S1 based on drifting sediment trap experiments. J Oceanogr 72:373–386. doi: 10.1007/s10872-015-0280-x CrossRefGoogle Scholar
  45. Hosoda S, Ohira T, Sato K, Suga T (2010) Improved description of global mixed-layer depth using Argo profiling floats. J Oceanogr 66:773–787. doi: 10.1007/s10872-010-0063-3 CrossRefGoogle Scholar
  46. Imai K, Nojiri Y, Tsurushima N, Saino T (2002) Time series of seasonal variation of primary productivity at station KNOT (44°N, 155°E) in the sub-arctic western North Pacific. Deep Sea Res II 49:5395–5408CrossRefGoogle Scholar
  47. Inoue R, Suga T, Kouketsu S, Hosoda S, Kobayashi T, Sato K, Nakajima H, Kawano T (2016a) Western North Pacific Integrated Physical-Biogeochemical Ocean Observation Experiment (INBOX): part 1. Specifications and Chronology of the S1-INBOX floats. J Mar Res 74:43–69CrossRefGoogle Scholar
  48. Inoue R, Honda MC, Fujiki T, Matsumoto K, Kouketsu S, Suga T, Saino T (2016b) Western North Pacific Integrated Physical-Biogeochemical Ocean Observation Experiment (INBOX): part 2. Biogeochemical responses to eddies and typhoons revealed from shipboard measurements and the S1 biogeochemical moorings during S1-INBOX. J Mar Res 74:71–99CrossRefGoogle Scholar
  49. IPCC (2013) Climate change 2013: The physical science basis. In: Stocker TF, Qin D, Plattner GK, Tignor M, Allen SK, Boschung J, Nauels A, Xia Y, Bex V, Midgley PM (eds) Contribution of working group I to the fifth assessment report of the Intergovernmental Panel on Climate Change. Cambridge University Press, Cambridge, p 1535Google Scholar
  50. Ishida H, Watanabe YW, Ishizaka J, Nakano T, Nagai N, Watanabe Y, Shimamoto A, Maeda N, Magi M (2009) Possibility of recent changes in vertical distribution and size composition of chlorophyll-a in the western North Pacific region. J Oceanogr 65:179–186CrossRefGoogle Scholar
  51. Jickells TD, An ZS, Andersen KK, Baker AR, Bergametti G, Brooks N, Cao JJ, Boyd PW, Duce RA, Hunter KA, Kawahata H, Kubilay N, laRoche J, Liss PS, Mahowald N, Prospero JM, Ridgwell AJ, Tegen STorres R, Torres R (2005) Global iron connections between desert dust, Ocean biogeochemistry, and climate. Science 308:67–71CrossRefGoogle Scholar
  52. JMA: Japan Meteorological Agency (2008) Annual report on atmospheric and marine environment monitoring No. 8, Observation Results for 2006 [CD-ROM], TokyoGoogle Scholar
  53. Kaneko R, Suzuki S, Nagata T, Hamasaki K (2016) Depth-dependent (0–5000 m) and seasonal variability in archaeal community structure in the subarctic and subtropical North Pacific Ocean. J Oceanogr 72:427–438. doi: 10.1007/s10872-016-0372-2 CrossRefGoogle Scholar
  54. Karl DM, Christian JR, Dore JE, Hebel DV, Letelier RM et al (1996) Seasonal and interannual variability in primary production and particle flux at station Aloha. Deep-Sea Res II 43:539–568CrossRefGoogle Scholar
  55. Karl DM, Letelier R, Tupas L, Dore J, Christian J, Hebel D (1997) The role of nitrogen fixation in biogeochemical cycling in the subtropical North pacific Ocean. Nature 388:533–538CrossRefGoogle Scholar
  56. Karl DM, Michaels AF, Bates NR, Knap A (2001) Building the long-term picture: the U.S.JGOFS time-series programs. Oceanography 14(4):6–17CrossRefGoogle Scholar
  57. Kawakami H, Honda MC (2007) Time-series observation of POC fluxes estimated from 234Th in the northwestern North Pacific. Deep Sea Res I 54:1070–1090CrossRefGoogle Scholar
  58. Kawakami H, Honda MC, Wakita M, Watanabe S (2007) Time-series observation of dissolved inorganic carbon and nurtients in the northwestern North Pacific. J Oceanogr 63:967–982CrossRefGoogle Scholar
  59. Kawakami H, Honda MC, Watanabe S, Saino T (2014) Time-series observations of 210Po and 210Pb radioactivity in the western North Pacific. J Radioanal Nucl Chem. doi: 10.1007/s10967-014-3141-y Google Scholar
  60. Kawakami H, Honda MC, Matsumoto K, Wakita M, Kitamura M, Fujiki T, Watanabe S (2015) POC fluxes estimated from 234Th in late spring-early summer in the western subarctic North Pacific. J Oceanogr 71:311–324. doi: 10.1007/s10872-015-0290-8 CrossRefGoogle Scholar
  61. Kitamura M, Kobari T, Honda MC, Matsumoto K, Sasaoka K, Nakamura R, Tanabe K (2016) Seasonal changes of mesozooplankton biomass and community structure in the subarctic and subtropical time-series stations in the western North Pacific. J Oceanogr 72:387–402. doi: 10.1007/s10872-015-0347-8 CrossRefGoogle Scholar
  62. Kobari T, Shinada A, Tsuda A (2003) Functional roles of interzonal migrating mesozooplankton in the western subarctic Pacific. Prog Oceanogr 57:279–298CrossRefGoogle Scholar
  63. Kobari T, Steinberg DK, Ueda A, Tsuda A, Silver MW, Kitamura M (2008) Impacts of ontogenetically migrating copepods on downward carbon flux in the western subarctic Pacific Ocean. Deep Sea Res II 55:1648–1660CrossRefGoogle Scholar
  64. Kobari T, Kitamura M, Minowa M, Isami H, Akamatsu H, Kawakami H, Matsumoto K, Wakita M, Honda MC (2013) Impacts of the wintertime mesozooplankton community to downward carbon flux in the subarctic and subtropical Pacific Oceans. Deep Sea Res I 81:78–88CrossRefGoogle Scholar
  65. Kobari T, Nakamura R, Unno K, Kitamura M, Tanabe K, NAgafuku H, Niibo A, Kawakami H, Matsumoto K, Honda MC (2016) Seasonal variability of carbon demands and fluxes by mesozooplankton community at subarctic and subtropical sites in the western North Pacific. J Oceanogr 72:403–418. doi: 10.1007/s10872-015-0348-7 CrossRefGoogle Scholar
  66. Kouketsu S, Inoue R, Suga T (2016a) Western North Pacific Integrated physical-biogeochemical ocean observation experiment (INBOX): part 3. Mesoscale variability of dissolved oxygen concentrations observed by multiple floats during S1-INBOX. J Mar Res 74:101–131CrossRefGoogle Scholar
  67. Kouketsu S, Kaneko H, Okunishi T, Sasaoka K, Itoh S, Inoue R, Ueno H (2016b) Mesoscale eddy effects on temporal variability of surface chlorophyll a in the Kuroshio Extension. J Oceanogr 72:439–451. doi: 10.1007/s10872-015-0286-4 CrossRefGoogle Scholar
  68. Kwon EY, Primeau F, Sarmiento JL (2009) The impact of remineralization depth on the air-sea carbon balance. Nat Geosci 2:630–635CrossRefGoogle Scholar
  69. Laws EA, Falkowski PG, Smith WO Jr, Ducklow H, McCarthy JJ (2000) Temperature effects on export production in the open ocean. Glob Baiogeochem Cycles 14:1231–1246CrossRefGoogle Scholar
  70. Lee K, Tong LT, Millero FJ, Sabine CL, Dickson AG, Goyet C, Park GH, Wanninkhof R, Feely RA, Key RM (2006) Global relationships of total alkalinity with salinity and temperature in surface waters of the world’s oceans. Geophys Res Lett 33:L19605. doi: 10.1029/2006GL027207 CrossRefGoogle Scholar
  71. Letelier RM, Dore JE, Winn CD, Karl DM (1996) Seasonal and interannual variations in photosynthetic carbon assimilation at station ALOHA. Deep Sea Res II 43(2–3):467–490CrossRefGoogle Scholar
  72. Limsakul A, Saino T, Goes JI, Midorikawa T (2002) Seasonal variability in the lower trophic level environments of the western subtropical Pacific and Oyashio waters – A retrospective study. Deep Sea Res II 49:5487–5512. doi: 10.1016/S0967-06445(02)00208-4 CrossRefGoogle Scholar
  73. Liu H, Imai K, Suzuki K, Nojiri Y, Tsurushima N, Saino T (2002) Seasonal valiability of picophytoplankton and bacteria in the western subarctic Pacific Ocean at station KNOT. Deep Sea Res 49:5409–5420CrossRefGoogle Scholar
  74. Mantua NJ, Hare SR, Zhang Y, Wallace JM, Francic RC (1997) A Pacific interdecadal climate oscillation with impacts on salmon production. Bull Am Meteorol Soc 78:1069–1079CrossRefGoogle Scholar
  75. Martin JH, Knauer GG, Karl DM, Broenkow WW (1987) VERTEX: carbon cycling in the northeast Pacific. Deep Sea Res 34:267–285CrossRefGoogle Scholar
  76. Matsumoto K, Honda MC, Sasaoka K, Wakita M, Kawakami H, Watanabe S (2014) Seasonal variability of primary production and phytoplankton biomass in the western Pacific subarctic gyre: control by light availability within the mixed layer. J Geophys Res Oceans 119(9):6523–6534. doi: 10.1002/2014JC009982 CrossRefGoogle Scholar
  77. Matsumoto K, Abe O, Fujiki T, Sukigara C, Mino Y (2016) Primary productivity at the time-series stations in the northwestern Pacific Ocean: is the subtropical station unproductive? J Oceanogr 72:359–371. doi: 10.1007/s10872-016-0354-4 CrossRefGoogle Scholar
  78. McGillicuddy DJ, Robinson AR, Siegel DA, Jannasch HW, Johnson R, Dickey TD, McNeil J, Michaels AF, Knap AH (1998) Influence of mesoscale eddies on new production in the Sargasso Sea. Nature 394(6690):263–266CrossRefGoogle Scholar
  79. Mehrbach C, Culberson CH, Hawley JE, Pytkowicz RM (1973) Measurement of the apparent dissociation constants of carbonic acid in seawater at atmospheric pressure. Limnol Oceanogr 18:897–907CrossRefGoogle Scholar
  80. Midorikawa T, Ishii M, Saito S, Sasano D, Kosugi N, Motoi T, Kamiya H, Nakadate A, Nemoto K, Inoue HY (2010) Decreasing pH trend estimated from 25-yr time series of carbonate parameters in the western North Pacific. Tellus B 62:649–659. doi: 10.1111/j.1600-0889.2010.00474.x CrossRefGoogle Scholar
  81. Mino Y, Sukigara C, Kawakami H, Honda MC, Matsumoto K, Wakita M, Kitamura M, Fujiki T, Sasaoka K, Abe O, Kaiser J, Saino T (2016) Seasonal variations in the nitrogen isotopic composition of settling particles at station K2 in the western subarctic North Pacific. J Oceanogr. doi: 10.1007/s10872-016-0381-1 Google Scholar
  82. Mochizuki M, Shiga N, Saito M, Imai K, Nojiri Y (2002) Seasonal changes in nutrients, chlorophyll a and phytoplankton assemblage of the western subarctic gyre in the Pacific Ocean. Deep Sea Res 49:5421–5440CrossRefGoogle Scholar
  83. Moran XAG, Lopez-Urrutia A, Calvo-Diaz A, Li WKW (2010) Increasing importance of small phytoplankton in the warmer ocean. Glob Change Biol 16:1137–1144. doi: 10.1111/j.1365-2486.2009.01960.x CrossRefGoogle Scholar
  84. MR13-04 Preliminary cruise report (2013) Accessed 3 Apr 2017
  85. Mucci A (1983) The solubility of calcite and aragonite in sea water at various salinities, temperatures and one atmosphere total pressure. Am J Sci 238:780–799CrossRefGoogle Scholar
  86. Ogawa H, Usui T, Koike I (2003) Distribution of dissolved organic carbon in the East China Sea. Deep Sea Res II 50:353–366CrossRefGoogle Scholar
  87. Oka E, Qiu B (2012) Progress of North Pacific mode water research in the past decade. J Oceanogr 68:5–20CrossRefGoogle Scholar
  88. Ono T, Midorikawa T, Watanabe YW, Tadokoro K, Saino T (2001) Temporal increases of phosphate and apparent oxygen utilization in the subsurface waters of western subarctic Pacific from 1968 and 1998. Geophys Res Lett 28:3285–3288CrossRefGoogle Scholar
  89. Ono T, Tadokoro K, Midorikawa T, Nishioka J, Saino T (2002) Multi-decadal decrease of net community produc-tion in western subarctic North Pacific. Geophys Res Lett. doi: 10.1029/2001GL014332 Google Scholar
  90. Park GH, Wanninkhof R, Doney SC, Takahashi T, Lee K, Feely RA, Sabine CL, Trinanes J (2010) Variability of global net sea-air CO2 fluxes over the last three decades using empirical relationships. Tellus 62B:352–368CrossRefGoogle Scholar
  91. Pierrot DEL, Wallace DWR (2006) MS Excel program developed for CO2 System Calculations, ORNL/CDIAC-105, Oak Ridge, Tennessee, Carbon Dioxide Information Analysis Center, Oak Ridge National Laboratory, US Department of EnergyGoogle Scholar
  92. Reid JLJr (1965) Intermediate waters of the Pacific Ocean. The Johns Hopkins Oceanographic Studies 2, p 85Google Scholar
  93. Sabine CL, Feely RA, Gruber N, Key RM, Lee K, Bullister JL, Wanninkhof R, Wong CS, Wallace DWR, Rilbrook B, Millero FJ, Peng TH, Kozyr A, Ono T, Aida FR (2004) The oceanic sink for anthropogenic CO2. Science 305:367–371CrossRefGoogle Scholar
  94. Saino T, Bychkov A, Chen CTA, Harrison PJ (2002) The joint global ocean flux study in the North Pacific. Deep Sea Res II 49:5297–5301CrossRefGoogle Scholar
  95. Sarmiento JL, Gruber N (2006) Ocean biogeochemical dynamics. Princeton University Press, New Jersey, p 503Google Scholar
  96. Sasai Y, Richards KJ, Ishida A, Sasaki H (2010) Effects of cyclonic mesoscale eddies on the marine ecosystem in the Kuroshio Extension region using an eddy-resolving coupled physical-biological model. Ocean Dyn 60(3):693–704. doi: 10.1007/s10236-010-0264-8 CrossRefGoogle Scholar
  97. Sasai Y, Yoshikawa C, Smith SL, Hashioka T, Matsumoto K, Wakita M, Sasaoka K, Honda MC (2016) Coupled 1-D physical-biological model study of phytoplankton production at two contrasting time series stations in the western North Pacific. J Oceanogr 72:509–526. doi: 10.1007/s10872-015-0341-1 CrossRefGoogle Scholar
  98. Sathyendranath S, Stuart V, Nair A, Oka K, Nakane T, Bouman H, Forget MH, Maass H, Platt T (2009) Carbon-to-chlorophyll ratio and growth rate of phytoplankton in the sea. Mar Ecol Prog Seri 383:73–84CrossRefGoogle Scholar
  99. Sedwick PN, Sholkovitz ER, Church TM (2007) Impact of anthropogenic combustion emissions on the fractional solubility of aerosol iron: evidence from Sargasso Sea. Geochem Geophys Geosys 8: Q10Q06. doi: 10.1029/2007GC001586
  100. Shibano R, Yamanaka Y, Okada N, Chuda T, Suzuki S, Niino H, Toratani M (2011) Responses of marine ecosystem to typhoon passages in the western subtropical North Pacific. Geophys Res Lett 38:L18608. doi: 10.1029/2011GL048717 CrossRefGoogle Scholar
  101. Sholkovitz ER, Sedwick PN, Church TM (2009) Influence of anthropogenic combustion emissions on the deposition of soluble aerosol iron to the ocean: empirical estimates for island sites in the North Atlantic. Geochim Cosmochim Acta 73:3981–4003. doi: 10.1016/j.gca.2009.04.029 CrossRefGoogle Scholar
  102. Siswanto E, Ishizaka J, Yokouchi K, Tanaka K, Tan CK (2007) Estimation of interannual and interdecadal variations of typhoon-induced primary production: a case study for the outer shelf of the East China Sea. Geophys Res Lett 34:L03604. doi: 10.1029/2006GL028368 CrossRefGoogle Scholar
  103. Siswanto E, Ishizaka J, Morimoto A, Tanaka K, Okamura K, Kristijono A, Saino T (2008) Ocean physical and biogeochemical responses to the passage of typhoon Meari in the East China Sea observed from Argo float and multiplatform satellites. Geophys Res Lett 35:L15604. doi: 10.1029/2008GL035040 CrossRefGoogle Scholar
  104. Siswanto E, Matsumoto K, Fujiki T, Honda MC, Sasaoka K, Saino T (2015) Reappraisal of meridional differences of factors controlling phytoplankton biomass and initial increase preceding seasonal Bloom in the Northwestern Pacific Ocean. Remote Sens Environ 159:44–56CrossRefGoogle Scholar
  105. Siswanto E, Honda MC, Sasai Y, Sasaoka K, Saino T (2016a) Meridional and seasonal footprints of the Pacific Decadal Oscillation on phytoplankton biomass in the northwestern Pacific Ocean. J Oceanogr 72:465–477. doi: 10.1007/s10872-016-0367-z CrossRefGoogle Scholar
  106. Siswanto E, Honda MC, Matsumoto K, Sasai Y, Fujiki T, Sasaoka K, Saino T (2016b) Sixteen-year phytoplankton biomass trend in the northwestern Pacific Ocean observed by the SeaWiFS and MODIS ocean color sensors. J Oceanogr 72:479–489. doi: 10.1007/s180872-016-0357-1 CrossRefGoogle Scholar
  107. Smith SL (2011) Consistently modeling the combined effects of temperature and concentration on nitrate uptake in the ocean. J Geophys Res Biogeosci 116:G04020. doi: 10.1029/2011JG001681 Google Scholar
  108. Sohm JA, Webb EA, Capone DG (2011) Emerging patterns of marine nitrogen fixation. Nat Rev Microbiol 9:499–508CrossRefGoogle Scholar
  109. Steinberg DK, Cope JS, Wilson SE, Kobari T (2008a) A comparison of mesopelagic mesozooplankton community structure in the subtropical and subarctic North Pacific Ocean. Deep Sea Res II 55:1615–1635CrossRefGoogle Scholar
  110. Steinberg DK, Van Mooy BAS, Buesseler KO, Boyd PW, Kobari T, Karl D (2008b) Bacteria vs. zooplankton control of sinking particle flux in the ocean’s twilight zone. Limnol Oceanogr 53:1327–1338CrossRefGoogle Scholar
  111. Suga T, Hanawa K (1990) The mixed layer climatology in the northwestern part of the North Pacific subtropical gyre and the formation area of Subtropical Mode Water. J Mar Res 48:543–566CrossRefGoogle Scholar
  112. Timothy DA, Wong SC, Barwell-Clarke JE, Page JS, White LA, Macdonald RW (2013) Climatology of sediment flux and composition in the subarctic Northeast pacific Ocean with biogeochemical implications. Progr Oceanogr 116:95–129CrossRefGoogle Scholar
  113. Toratani M (2008) Primary production enhancement by typhoon Ketsana in 2003 in western North Pacific. SPIE Remote Sens Inland Coast Ocean. Waters. 7150. doi:  10.1117/12806426
  114. Tsuda A, Takeda S, Saito H, Nishioka J, Nojiri Y, Kudo I, Kiyosawa H, Shiomoto A, Imai K, Ono T, Shimamoto A, Tsumune D, Yoshimura T, Aono T, Hinuma A, Kinugasa M, Suzuki K, Sohrin Y, Noiri Y, Tani H, Deguchi Y, Tsurushima N, Ogawa H, Fukami K, Kumaand K, Saino T (2003) A mesoscale iron enrichment in thewestern subarctic pacific induces large centric diatombloom. Science 300:958–961CrossRefGoogle Scholar
  115. Tsurushima N, Nojiri Y, Imai K, Watanabe S (2002) Seasonal variations of carbon dioxide system and nutrients in the surface mixed layer at station KNOT (44°N, 155°E) in the subarctic western North Pacific. Deep Sea Res II 49:5377–5394CrossRefGoogle Scholar
  116. Uchimiya M, Ogawa H, Nagata T (2016) Effects of temperature elevation and glucose addition on prokaryotic production and respiration in the mesopelagic layer of the western North Pacific. J Oceanogr 72:419–426. doi: 10.1007/s10872-015-0294-4 CrossRefGoogle Scholar
  117. Uda M (1963) Oceanography of the subarctic Pacific Ocean. J Fish Res Board Can 20:119–179CrossRefGoogle Scholar
  118. Villareal TA, Adornato L, Wilson C, Schoenbaechler CA (2011) Summer blooms of diatom-diazotroph assemblages and surface chlorophyll in the North Pacific gyre: a disconnect. J Geophys Res: Oceans 116(C3):C03001. doi: 10.1029/2010JC006268 CrossRefGoogle Scholar
  119. Volk T, Hoffert MI (1985) Ocean carbon pumps: Analysis of relative strengths and efficiencies in ocean-driven atmospheric CO2 changes. In: Sundquist ET, Broecker WS (eds) The carbon cycle and atmospheric CO2: natural variations archean to present, 32. Geophysical Monograph, American Geophysical Union, Washington, pp 99–110Google Scholar
  120. Wakita M, Watanabe S, Murata A, Tsurushima N, Honda MC (2010) Decadal change of dissolved inorganic carbon in the subarctic western North Pacific Ocean. Tellus B 62:608–620. doi: 10.1111/j.1600-0889.2010.00476.x CrossRefGoogle Scholar
  121. Wakita M, Watanabe S, Honda MC, Nagano A, Kimoto K, Matsumoto K, Kawakami H, Fujiki T, Kitamura M, Sasaki K, Sasaoka K, Nakano Y, Murata A (2013) Ocean acidification from 1997 to 2011 in the subarctic western North Pacific Ocean. Biogeosciences 10:7817–7827. doi: 10.5194/bg-10-7817-2013 CrossRefGoogle Scholar
  122. Wakita M, Honda MC, Matsumoto K, Fujiki T, Kawakami H, Yasunaka S, Sasai Y, Sukigara C, Uchimiya M, Kitamura M, Mino Y, Nagano A, Usui N, Watanabe S, Saino T (2016) Biological organic carbon export estimated from carbon budget in the surface water of western subarctic and subtropical North Pacific Ocean. J Oceanogr 72:665–685. doi: 10.1007/s10872-016-0379-8 CrossRefGoogle Scholar
  123. Watanabe YW, Ono T, Shimamoto A, Sugimoto T, Wakita M, Watanabe S (2001) Probability of a reduction in the formation rate of the subsurface water in the North Pacific during the 1980s and 1990s. Geophys Res Lett 28:3289–3292CrossRefGoogle Scholar
  124. Watanabe YW, Shigemitsu M, Tadokoro K (2008) Evidence of a change in oceanic fixed nitrogen with decadal climate change in the North Pacific subpolar region. Geophys Res Lett 35:L01602. doi: 10.1029/2007GL032188 CrossRefGoogle Scholar
  125. Watanabe YW, Shigemitsu M, Ujiie T, Minami H (2014) Decadal shift of biogenic sinking particle flux in the western North Pacific subpolar region. Geophys Res Lett 41(2):513–518. doi: 10.1002/2013GL059142 CrossRefGoogle Scholar
  126. Wilson S, Steinberg DK, Buesseler K (2008) Changes in fecal pellet characteristics with depth as indicators of zooplankton repackaging of particles in the mesopelagic zone of the subtropical and subarctic North Pacific Ocean. Deep Sea Res II 55:1636–1647CrossRefGoogle Scholar
  127. Winn CD, Mackenzie FT, Carrillo CJ, Sabine CL, Karl DM (1994) Air-sea carbon dioxide exchange in the North Pacific Subtropical Gyre: implications for the global carbon budget. Glob Biogeochem Cycles 8(2):157–163CrossRefGoogle Scholar
  128. Wong CS, Chan YH (1991) Temporal variations in the partial pressure and flux of CO2 at ocean station P in the subarctic northeast Pacific Ocean. Tellus 43B:206–223CrossRefGoogle Scholar
  129. Wong CS, Waser NAD, Nojiri Y, Whitney FA, Page JS, Zeng J (2002a) Seasonal cycles of nutrients and dissolved inorganic carbon at high and mid latitudes in the North Pacific Ocean during Skaugran cruises: determination of new production and nutrient uptake ratios. Deep-Sea Res II 49:5317–5338CrossRefGoogle Scholar
  130. Wong CS, Waser NAD, Whitney FA, Johnson WK, Page JS (2002b) Time-series study of the biogeochemistry of the North East subarctic Pacific: reconciliation of the Corg/N remineralization and uptake ratios with the Redfield ratios. Deep Sea Res II 49:5717–5738CrossRefGoogle Scholar
  131. Yamaguchi H, Kawachi M (2013) Taxonomy and genome analysis of eukaryotic picophytoplankton originated from cryopreserved narine environmental specimens MR13-04 Preliminary Cruise Report, p 125–138. Accessed 3 Apr 2017
  132. Yamaguchi A, Watanabe Y, Ishida H, Harimoto T, Furusawa K, Suzuki S, Ishizaka J, Ikeda T, Takahashi MM (2002) Structure and size distribution of plankton communities down to the grater depths in the western North Pacific Ocean. Deep Sea Res II 49:5513–5530CrossRefGoogle Scholar
  133. Yokouchi K, Tsuda A, Kuwata A, Kawai H, Ichikawa T, Hirota Y, Adachi K, Asanuma I, Ishida H (2007) Simulated in situ measurements of primary production in Japanese waters. In: Kawahata H, Awaya Y (eds) Elsevier Oceanography Series 73, Global climate change and response of carbon cycle in the equatorial Pacific and Indian Oceans and adjacent landmasses, Elsevier science, Amsterdam, pp 65–88Google Scholar
  134. Yoshikawa C, Abe H, Aita MN, Breider F, Kuzunuki K, Toyoda S, Ogawa NO, Suga H, Ohkouchi N, Danielache SO, Wakita M, Honda MC, Yoshida N (2016) Insights into the production processes of nitrous oxide in the western north Pacific by using a marine ecosystem isotopomer model. J Oceanogr 72:491–508. doi: 10.1007/s10872-015-0308-2 CrossRefGoogle Scholar
  135. Zeng J, Nojiri Y, Murphy PP, Wong CS, Fujinuma Y (2002) A comparison of ΔpCO2 distributions in the northern North Pacific using results from a commercial vessel in 1995–1999. Deep Sea Res II 49:5303–5315CrossRefGoogle Scholar

Copyright information

© The Oceanographic Society of Japan and Springer Japan 2017

Authors and Affiliations

  • Makio C. Honda
    • 1
    Email author
  • Masahide Wakita
    • 1
  • Kazuhiko Matsumoto
    • 1
  • Tetsuichi Fujiki
    • 1
  • Eko Siswanto
    • 1
  • Kosei Sasaoka
    • 1
  • Hajime Kawakami
    • 1
  • Yoshihisa Mino
    • 2
  • Chiho Sukigara
    • 2
  • Minoru Kitamura
    • 1
  • Yoshikazu Sasai
    • 1
  • Sherwood L. Smith
    • 1
  • Taketo Hashioka
    • 1
  • Chisato Yoshikawa
    • 1
  • Katsunori Kimoto
    • 1
  • Shuichi Watanabe
    • 1
  • Toru Kobari
    • 3
  • Toshi Nagata
    • 4
  • Koji Hamasaki
    • 4
  • Ryo Kaneko
    • 4
  • Mario Uchimiya
    • 5
  • Hideki Fukuda
    • 4
  • Osamu Abe
    • 2
  • Toshiro Saino
  1. 1.Japan Agency for Marine-Earth Science and TechnologyYokosukaJapan
  2. 2.Nagoya UniversityNagoyaJapan
  3. 3.Kagoshima UniversityKagoshimaJapan
  4. 4.The University of TokyoKashiwaJapan
  5. 5.RIKENYokohamaJapan

Personalised recommendations