Skip to main content
Log in

Oceanic eddy-driven atmospheric secondary circulation in the winter Kuroshio Extension region

  • Original Article
  • Published:
Journal of Oceanography Aims and scope Submit manuscript

Abstract

In the winter Kuroshio Extension region, the atmospheric response to oceanic eddies is studied using reanalysis and satellite data. The detected eddies in this region are mostly under the force of northwesterly wind, with the sea surface temperature (SST) anomaly located within the eddy. By examining the patterns of surface wind divergence, three types of atmospheric response are identified. The first type, which occupies 60%, is characterized by significant sea surface wind convergence and divergence at the edge and a vertical secondary circulation (SC) aloft, supporting the “vertical momentum mixing mechanism”. The SCs on anticyclonic eddies (AEs) can reach up to 300 hPa, but those on cyclonic eddies (CEs) are limited to 700 hPa. This can be explained by analyzing vertical eddy heat transport: When northwesterly wind passes the warmer center of an AE, it is from the cold to warm sea surface, resulting in stronger evaporation and convection, triggering stronger upward velocity and moist static heat flux. For the cases of CEs, the wind blows from warm to cold, which means less instability and less evaporation, resulting in weaker SCs. The second type, which occupies 10%, is characterized by divergence and a sea level pressure anomaly in the center, supported by the “pressure adjustment mechanism”. The other 30% are mostly weak eddies, and the atmospheric variation aloft is unrelated to the SST anomaly. Our work provides evidence for the different atmospheric responses over oceanic eddies and explains why SCs over AEs are much stronger than those over CEs by vertical heat flux analysis.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  • AVISO (2014) SSALTO/DUACS user handbook: (M)SLA and (M)ADT near-real time and delayed time products. Aviso Altimetry, Ramonville St. Agne, p 69

  • Chaigneau A, Eldin G, Dewitte B (2009) Eddy activity in the four major upwelling systems from satellite altimetry (1992–2007). Prog Oceanogr 83(1–4):117–123. doi:10.1016/j.pocean.2009.07.012

    Article  Google Scholar 

  • Chelton DB, Xie S-P (2010) Coupled ocean-atmosphere interaction at oceanic mesoscales. Oceanography 23(4):52–69. doi:10.5670/oceanog.2010.05

    Article  Google Scholar 

  • Chelton DB, Schlax MG, Samelson RM (2011) Global observations of nonlinear mesoscale eddies. Prog Oceanogr 91:167–216. doi:10.1016/j.pocean.2011.01.002

    Article  Google Scholar 

  • Chen L, Jia Y, Liu Q (2015) Mesoscale eddies in the Mindanao Dome region. J Oceanogr 71(1):133–140. doi:10.1007/s10872-014-0255-3

    Article  Google Scholar 

  • Chow CH, Liu Q, Xie S-P (2015) Effects of Kuroshio Intrusions on the atmosphere northeast of Taiwan Island. Geophys Res Lett. doi:10.1002/2014-GL062796

    Google Scholar 

  • Cleveland WS, Devlin SJ (1988) Locally weighted regression: an approach to regression analysis by local fitting. J Am Stat Assoc 83:596–610

    Article  Google Scholar 

  • Frenger I, Gruber N, Knutti R, Münnich M (2013) Imprint of Southern Ocean eddies on winds, clouds and rainfall. Nat Geosci 6(8):608–612. doi:10.1038/ngeo1863

    Article  Google Scholar 

  • Gallus WA Jr, Johnson RH (1991) Heat and moisture budgets of an intense midlatitude squall line. J Atmos Sci 48:122–146

    Article  Google Scholar 

  • Gaube P (2012) Satellite observations of the influence of mesoscale ocean eddies on near-surface temperature, phytoplankton and surface stress. PhD thesis, Oreg. State Univ., Corvallis

  • Hoskins BJ, Valdes PJ (1990) On the existence of storm-tracks. J Atmos Sci 47:1854–1864

    Article  Google Scholar 

  • Isern-Fontanet J, Font J, Garcia-Ladona E, Emelianov M, Millot C, Taupier- Letage I (2004) Spatial structure of anticyclonic eddies in the Algerian basin (Mediterranean Sea) analyzed using the Okubo–Weiss parameter. Deep Sea Res Part II 51(25–26):3009–3028. doi:10.1016/j.dsr2.2004.09.013

    Article  Google Scholar 

  • Itoh S, Yasuda I (2010a) Characteristics of mesoscale eddies in the Kuroshio–Oyashio Extension region detected from the distribution of the sea surface height anomaly. J Phys Oceanogr 40:1018–1034. doi:10.1175/2009JPO4265.1

    Article  Google Scholar 

  • Itoh S, Yasuda I (2010b) Water mass structure of warm and cold anticyclonic eddies in the western boundary region of the subarctic North Pacific. J Phys Oceanogr 40:2624–2642. doi:10.1175/2010JPO4475.1

    Article  Google Scholar 

  • Kelly AK, Small RJ, Samelson RM, Qiu B, Joyce TM, Kown YO, Cronin MF (2010) Western boundary currents and frontal air-sea interaction: gulf stream and Kuroshio Extension. J Clim 23(21):5644–5667. doi:10.1175/2010JCLI-3346.1

    Article  Google Scholar 

  • Kobashi F, Xie S-P, Iwasaka N, Sakamoto TT (2008) Deep atmospheric response to the North Pacific oceanic subtropical front in spring. J Clim 21:5960–5975. doi:10.1175/2008JCLI2311.1

    Article  Google Scholar 

  • Kubokawa A (1999) Ventilated thermocline strongly affected by a deep mixed layer: a theory for subtropical countercurrent. J Phys Oceanogr 29(6):1314–1333

    Article  Google Scholar 

  • Kwon YO, Alexander MA, Bond NA, Frankignoul C, Nakamura H, Qiu B, Thompson L (2010) Role of the Gulf Stream and Kuroshio–Oyashio systems in large-scale atmosphere–ocean interaction: a review. J Clim 23:3249–3281

    Article  Google Scholar 

  • Lindzen RS, Nigam S (1987) On the role of sea surface temperature gradients in forcing low-level winds and convergence in the tropics. J Atmos Sci 44:2418–2436

    Article  Google Scholar 

  • Liu J-W, Zhang S-P, Xie S-P (2013) Two types of surface wind response to the East China Sea Kuroshio front. J Clim 26:8616–8627. doi:10.1175/JCLI-D-12-00092.1

    Article  Google Scholar 

  • Luo QW, Tung WW (2015) Case study of moisture and heat budgets within atmospheric Rivers. Mon Wea Rev 143(10):4145–4162. doi:10.1175/MWR-D-15-0006.1

    Article  Google Scholar 

  • Ma J, Xu H, Dong C, Lin P, Liu Y (2015a) Atmospheric responses to oceanic eddies in the Kuroshio Extension region. J Geophys Res 120:6313–6330. doi:10.1002/2014JD022930

    Google Scholar 

  • Ma X, Chang P, Saravanan R, Montuoro R, Hsieh J-S, Wu D, Lin X, Wu L, Jing Z (2015b) Distant Influence of Kuroshio Eddies on North Pacific Weather Patterns? Sci Rep 5:11785. doi:10.1038/srep17785

    Article  Google Scholar 

  • Ma J, Xu H, Dong C (2016) Seasonal variations in atmospheric responses to oceanic eddies in the Kuroshio Extension. Tellus A 68:31563. doi:10.3402/tellusa.v68.31563

    Article  Google Scholar 

  • Masunaga R, Nakamura H, Miyasaka T, Nishii K, Tanimoto Y (2015) Separation of climatological imprints of the Kuroshio Extension and Oyashio fronts on the wintertime atmospheric boundary layer: Their sensitivity to SST resolution prescribed for atmospheric reanalysis. J Clim 28(5):1764–1787. doi:10.1175/JCLI-D-14-00314.1

    Article  Google Scholar 

  • Minobe S, A. Kuwano-Yoshida A, Komori N, Xie S-P, Small RJ (2008) Influence of the Gulf Stream on the troposphere. Nature 452:206–209. doi:10.1038/nature06690

  • Minobe S, Miyashita M, Kuwano-Yoshida A, Tokinaga H, Xie S-P (2010) Atmospheric response to the Gulf Stream: seasonal variations. J Clim 23(13):3699–3719. doi:10.1175/2010JCLI3359.1

    Article  Google Scholar 

  • O’Neill LW, Chelton DB, Esbensen SK (2010) The effects of SST- induced surface wind speed and direction gradients on midlatitude surface vorticity and divergence. J Clim 23:255–281. doi:10.1175/2009JCLI2613.1

    Article  Google Scholar 

  • Park KA, Cornillon P, Codiga DL (2006) Modification of surface winds near ocean fronts: effects of Gulf Stream rings on scatterometer (QuikSCAT, NSCAT) wind observations. J Geophys Res 111:C03021. doi:10.1029/2005-JC003016

    Article  Google Scholar 

  • Putrasahan DA, Miller AJ, Seo H (2013) Isolating mesoscale coupled ocean-atmosphere interactions in the Kuroshio Extension region. Dyn Atmos Oceans 63:60–78. doi:10.1016/j.dynatmoce.2013.04.001

    Article  Google Scholar 

  • Quijano AL, Irina NS, Toon OB (2000) Radiative heating rates and direct radiative forcing by mineral dust in cloudy atmospheric conditions. J Geophys Res 105(D10):12207–12219

    Article  Google Scholar 

  • Saha S et al (2010) The NCEP climate forecast system reanalysis. Bull Am Meteor Soc 91(8):1015–1057. doi:10.1175/2010BAMS3001.1

    Article  Google Scholar 

  • Small RJ, deSzoeke SP, Xie S-P, O’Neill LW, Seo H, Song Q, Cornil-lon P, Spall M, Minobe S (2008) Air–sea interaction over ocean fronts and eddies. Dyn Atmos Oceans 45:274–319. doi:10.1016/j.dynatmoce.2008.01.001

  • Smirnov D, Newman M, Alexander MA, Kwon YO, Frankignoul C (2015) Investigating the local atmospheric response to a realistic shift in the Oyashio Sea Surface Temperature Front. J Clim 28:1126–1147. doi:10.1175/JCLI-D-14-00285.1

    Article  Google Scholar 

  • Suga T, Aoki Y, Saito H, Hanawa K (2008) Ventilation of the North Pacific subtropical pycnocline and mode water formation. Prog Oceanogr 77:285–297. doi:10.1016/j.pocean.2006.12.005

    Article  Google Scholar 

  • Wallace JM, Mitchell TP, Deser C (1989) The influence of sea-surface temperature on surface wind in the eastern Equatorial Pacific: seasonal and interannual variability. J Clim 2(12):1492–1499

    Article  Google Scholar 

  • Wang Y, Liu WT (2015) Observational evidence of frontal-scale atmospheric responses to Kuroshio Extension variability. J Clim 28:9459–9472. doi:10.1175/JCLI-D-14-00829.1

    Article  Google Scholar 

  • Xie S-P (2004) Satellite observations of cool ocean-atmosphere interaction. Bull Am Meteor Soc 85:195–208. doi:10.1175/BAMS-85-2-195

    Article  Google Scholar 

  • Yanai M, Johnson RH (1993) Impacts of cumulus convection on thermodynamic fields. The Representation of Cumulus Convection in Numerical Models, Meteor Monogr, No. 24, Am. Meteor. Soc., pp 39–62

  • Yanai M, Tomita T (1998) Seasonal and interannual variability of atmospheric heat sources and moisture sinks as determined from NCEP-NCAR reanalysis. J Clim 11(3):463–482

    Article  Google Scholar 

  • Yanai M, Esbensen S, Chu JH (1973) Determination of bulk properties of tropical cloud clusters from large-scale heat and moisture budgets. J Atmos Sci 30:611–627

    Article  Google Scholar 

Download references

Acknowledgements

The authors thank the two anonymous reviewers for valuable comments and detailed suggestions to improve the manuscript. The altimeter data are obtained from the AVISO Web site at http://www.aviso.oceanobs.com/en/data/index.html. The AMSR-E/AMSR2 rain rate satellite observations are available at http://www.remss.com. Thanks are due to NCAR/UCAR RDA for providing the CFSR reanalysis at rda.ucar.edu/datasets/ds093.1. This study is supported by the Strategic Priority Research Program of the Chinese Academy of Sciences (grant no. XDA11010203), the Chinese National Key Basic Research Program (G2012CB417401), and the National Natural Science Foundation of China (41176004, 41490643).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yinglai Jia.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chen, L., Jia, Y. & Liu, Q. Oceanic eddy-driven atmospheric secondary circulation in the winter Kuroshio Extension region. J Oceanogr 73, 295–307 (2017). https://doi.org/10.1007/s10872-016-0403-z

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10872-016-0403-z

Keywords

Navigation