Skip to main content

Advertisement

Log in

Nutrient dynamics in core sediments of an artificial basal medium prepared with steelmaking slag and dredged materials

  • Original Article
  • Published:
Journal of Oceanography Aims and scope Submit manuscript

Abstract

The availability of steelmaking slag, an industrial by-product, was examined as a component of a basal medium for the creation and regeneration of shallow habitats in coastal ecosystems. We investigated nutrient dynamics in sediments prepared with slag and dredged materials by conducting a core incubation experiment for 379 days. Silica sand was used as the reference material. Although slag caused alkalization of pore water, the pH in the surface layer recovered within a few days. The use of slag had limited influence on the dissolved inorganic nitrogen content, but pore water phosphate concentrations were considerably suppressed in slag-based media, especially when the pH was high. Nutrient diffusion fluxes from slag- and sand-based sediment cores were comparable to those in natural coastal environments. After 379 days, more than 90 % of the nutrients remained in the top 5 cm of the cores. Moreover, the sustained release of nutrients from basal media prepared with slag may play an important role in sustaining the productivity of macrophytobenthic ecosystems, including seagrass meadows. The mesocosm-scale experiment we proposed could evaluate long-term variations of nutrient dynamics in the artificial basal media. Because of wide variations in chemical properties among the different types of slag and dredged materials, approaches similar to this study may be essential before any large-scale application to marine environments.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  • Abe K, Tsujino M, Nakagawa N, Abo K (2015) Characteristic of Si:P: N ratio in bottom water in central Suo-Nada, western Seto Inland Sea. J Oceanogr 71:53–63

    Article  Google Scholar 

  • Agawin NSR, Duarte CM (2002) Evidence of direct particle trapping by a tropical seagrass meadow. Estuaries 25:1205–1209

    Article  Google Scholar 

  • Arias CA, Del Bubba M, Brix H (2001) Phosphorus removal by sands for use as media in subsurface flow constructed reed beds. Water Res 35:1159–1168

    Article  Google Scholar 

  • Asaoka S, Okuda T, Nakai S, Nishijima W (2013) Determination method for maximum calcium releasing potential. ISIJ Int 53:1888–1893

    Article  Google Scholar 

  • Aspila KI, Agemian H, Chau ASY (1976) A semi-automated method for the determination of inorganic, organic and total phosphate in Sediments. Analyst 101:187–197

    Article  Google Scholar 

  • Backman TW, Barilotti DC (1976) Irradiance reduction: effects on standing crop of the eelgrass Zostera marina in a coastal lagoon. Mar Biol 34:33–40

    Article  Google Scholar 

  • Balzer W (1984) Organic matter degradation and biogenic element cycling in a nearshore sediment (Kiel Bight). Limnol Oceanogr 29:1231–1246

    Article  Google Scholar 

  • Berner RA (1980) Early Diagenesis: A Theoretical Approach. Princeton University Press, Princeton

  • Blanchet H, de Montaudouin X, Lucas A, Chardy P (2004) Heterogeneity of macrozoobenthic assemblages within a Zostera noltii seagrass bed: diversity, abundance, biomass and structuring factors. Estuar Coast Shelf Sci 61:111–123

    Article  Google Scholar 

  • Chan C-M, Mizutani T, Kikuchi Y (2011) Reusing dredged marine clay by solidification with steel slag: A study of compressive strength. Int J Civil Struct Eng 2:270–279

    Google Scholar 

  • Conley DJ, Stockenberg A, Carman R, Johnstone RW, Rahm L, Wulff F (1997) Sediment-water nutrient fluxes in the Gulf of Finland, Baltic Sea. Estuar Coast Shelf Sci 45:591–598

    Article  Google Scholar 

  • Duarte CM (2002) The future of seagrass meadows. Environ Conserv 29:192–206

    Article  Google Scholar 

  • Erftemeijer PLA, Lewis RR (2006) Environmental impacts of dredging on seagrasses: a review. Mar Pollut Bull 52:1553–1572

    Article  Google Scholar 

  • Erftemeijer PLA, Middelburg JJ (1995) Mass balance constraints on nutrient cycling in tropical seagrass beds. Aquat Bot 50:21–36

    Article  Google Scholar 

  • Fisher TR, Carlson PR, Barber RT (1982) Sediment nutrient regeneration in three North Carolina estuaries. Estuar Coast Shelf Sci 14:101–116

    Article  Google Scholar 

  • Fonseca MS, Cahalan JA (1992) A preliminary evaluation of wave attenuation by four species of seagrass. Estuar Coast Shelf Sci 35:565–576

    Article  Google Scholar 

  • Fonseca MS, Kenworthy WJ, Thayer GW (1998) Guidelines for the Conservation and Restoration of Seagrasses in the United States and Adjacent Waters. NOAA Coastal Ocean Program Decision Analysis Series No. 12. NOAA Coastal Ocean Office, Silver Spring, MD

  • Fourqurean JW, Duarte CM, Kennedy H, Marbà N, Holmer M, Mateo MA, Apostolaki ET, Kendrick GA, Krause-Jensen D, McGlathery KJ, Serrano O (2012) Seagrass ecosystems as a globally significant carbon stock. Nat Geosci 5:505–509. doi:10.1038/NGEO1477

    Article  Google Scholar 

  • Futatsuka T, Shitogiden K, Miki T, Nagasaka T, Hino M (2004) Dissolution behavior of nutrition elements from steelmaking slag into seawater. ISIJ Int 44:753–761

    Article  Google Scholar 

  • Gacia E, Duarte CM (2001) Sediment retention by a Mediterranean Posidonia oceanica meadow: The balance between deposition and resuspension. Estuar Coast Shelf Sci 52:505–514

    Article  Google Scholar 

  • Gaertner-Mazoun N, Lacoste E, Bodoy A, Peacock L, Rodier M, Langlade M-J, Orempuller J, Charpy L (2012) Nutrient fluxes between water column and sediments: Potential influence of the pearl oyster culture. Mar Pollut Bull 65:500–505

    Article  Google Scholar 

  • Grenz C, Denis L, Pringault O, Fichez R (2010) Spatial and seasonal variability of sediment oxygen consumption and nutrient fluxes at the sediment water interface in a sub-tropical lagoon (New Caledonia). Mar Pollut Bull 61:399–412

    Article  Google Scholar 

  • Haraguchi K, Suzuki K, Taniguchi A (2003) Effects of steelmaking slag addition on growth of marine phytoplankton. ISIJ Int 43:1461–1468

    Article  Google Scholar 

  • Harwell MC, Orth RJ (1999) Eelgrass (Zostera marina L.) seed protection for field experiments and implications for large-scale restoration. Aquat Bot 64:51–61

    Article  Google Scholar 

  • Hauxwell J, Cebrian J, Valiela I (2006) Light dependence of Zostera marina annual growth dynamics in estuaries subject to different degrees of eutrophication. Aquat Bot 84:17–25

    Article  Google Scholar 

  • Hayashi A, Tozawa H, Shimada K, Takahashi K, Kaneko R, Tsukihashi F, Inoue R, Ariyama T (2011) Effects of the seaweed bed construction using the mixture of steelmaking slag and dredged soil on the growth of seaweeds. ISIJ int 51:1919–1928

    Article  Google Scholar 

  • Hendriks IE, Sintes T, Bouma TJ, Duarte CM (2008) Experimental assessment and modeling evaluation of the effects of the seagrass Posidonia oceanica on flow and particle trapping. Mar Ecol Prog Ser 356:163–173

    Article  Google Scholar 

  • Hioki N, Kuma K, Morita Y, Miura D, Ooki A, Tanaka S, Onishi H, Takatsu T, Kobayashi N, Kamei Y (2015) Regeneration dynamics of iron and nutrients from bay sediment into bottom water of Funka Bay, Japan. J Ocenogr 71:703–714

    Article  Google Scholar 

  • Hirai S, Mizutani T, Kikuchi Y, Nakamura S, Iguchi K (2012) Study on effect of mixing condition on strength of mixture of dredged soil and steel slag. In: Miura S, Ishikawa T, Yoshida N, Hirai Y, Abe N (eds) Advances in Transportation Geotechnics II. Taylor & Francis, London, pp 302–308

    Chapter  Google Scholar 

  • Japanese Industrial Standards Committee (2009) Test method for ignition loss of soils, JIS A 1226

  • Johansson L, Gustafsson JP (2000) Phosphate removal using blast furnace slags and opoka-mechanisms. Water Res 34:259–265

    Article  Google Scholar 

  • Kaldy JE, Dunton KH, Kowalski JL, Lee K-S (2004) Factors controlling seagrass revegetation onto dredged material deposits: A case study in Lower Laguna Madre, Texas. J Coastal Res 20:292–300

    Article  Google Scholar 

  • Koch EW, Beer S (1996) Tides, light and the distribution of Zostera marina in Long Island Sound, USA. Aquat Bot 53:97–107

    Article  Google Scholar 

  • Komatsu T (1997) Long term changes in the Zostera bed area in the Seto Inland Sea (Japan), especially along the coast of the Okayama Prefecture. Oceanol Acta 20:209–216

    Google Scholar 

  • Komatsu T, Ohtaki T, Sakamoto S, Sawayama S, Hamana Y, Shibata M, Shibata K, Sasa S (2015) Impact of the 2011 Tsunami on Seagrass and Seaweed Beds in Otsuchi Bay, Sanriku Coast, Japan. In: Ceccaldi H-J, Hénocque Y, Koike Y, Komatsu T, Stora G, Tusseau-Vuillemin M-H (eds) Marine productivity: perturbations and resilience of socio-ecosystems, Springer, Switzerland, pp 43-53. doi: 10.1007/978-3-319-13878-7_5

  • Kourounis S, Tsivilis S, Tsakiridis PE, Papadimitriou GD, Tsibouki Z (2007) Properties and hydration of blended cements with steelmaking slag. Cement Concrete Res 37:815–822

    Article  Google Scholar 

  • Krom MD, Berner RA (1980) The diffusion coefficients of sulfate, ammonium, and phosphate ions in anoxic marine sediments. Limnol Oceanogr 25:327–337

    Article  Google Scholar 

  • Kuwae T, Kanda J, Kubo A, Nakajima F, Ogawa H, Sohma A, Suzumura M (2015) Blue carbon in human-dominated estuarine and shallow coastal systems. Ambio. doi:10.1007/s13280-015-0725-x

    Google Scholar 

  • Lee K-S, Park J-I (2008) An effective transplanting technique using shells for restoration of Zostera marina habitats. Mar Pollut Bull 56:1015–1021

    Article  Google Scholar 

  • Lee SI, Weon SY, Lee CW, Koopman B (2003) Removal of nitrogen and phosphate from wastewater by addition of bittern. Chemosphere 51:265–271

    Article  Google Scholar 

  • Li Y-H, Gregory S (1974) Diffusion of ions in sea water and in deep-sea sediments. Geochim Cosmochim Acta 38:703–714

    Article  Google Scholar 

  • Lu S, Bai S, Shan H (2008) Mechanisms of phosphate removal from aqueous solution by blast furnace slag and steel furnace slag. J Zhejiang Univ Sci A 9:125–132

    Article  Google Scholar 

  • Malasavage NE, Jagupilla S, Grubb DG, Wazne M, Coon WP (2012) Geotechnical performance of dredged material—steel slag fines blends: laboratory and field evaluation. J Geotech Geoenviron Eng 138:981–991

    Article  Google Scholar 

  • Nippon Slag Association (2015) Annual Report on Statistics on Iron and Steel Slag (S-149), pp. 44

  • Nishijima W, Tsukasaki A, Tanimoto T, Nagao M, Tsurushima N, Suzumura M (2015) Applicability of steel slag as a substrate in eelgrass (Zostera marina L.) beds restoration in coastal Japan. Ecol Eng 81:418–427

    Article  Google Scholar 

  • Orth RJ, Heck KLJ, van Montfrans J (1984) Faunal communities in seagrass beds: a review of the influence of plant structure and prey characteristics on predator: Prey relationships. Estuaries 7:339–350

    Article  Google Scholar 

  • Orth RJ, Harwell MC, Fishman JR (1999) A rapid and simple method for transplanting eelgrass using single, unanchored shoots. Aquat Bot 64:77–85

    Article  Google Scholar 

  • Orth RJ, Tim JB, Carruthers TJB, Dennison WC, Duarte CM, Fourqurean JW, Heck KLJ, Hughes AR, Kendrick GA, Kenworthy WJ, Olyarnik S, Short FT, Waycott M, Williams SL (2006) A global crisis for seagrass. Biogeosciences 56:987–996

    Google Scholar 

  • Orth RJ, Marion SR, Granger S, Traber M (2009) Evaluation of a mechanical seed planter for transplanting Zostera marina (eelgrass) seeds. Aquat Bot 90:204–208

    Article  Google Scholar 

  • Ospina-Alvarez N, Caetano M, Vale C, Santos-Echeandía J, Bernárdez P, Prego R (2014) Exchange of nutrients across the sediment–water interface in intertidal ria systems (SW Europe). J Sea Res 85:349–358

    Article  Google Scholar 

  • Oyamada K, Tsukidate M, Watanabe K, Takahashi T, Isoo T, Terawaki T (2008) A field test of porous carbonated blocks used as artificial reef in seaweed beds of Ecklonia cava. L Appl Phycol 20:863–868. doi:10.1007/s10811-008-9332-6

    Article  Google Scholar 

  • Park J-I, Lee K-S (2007) Site-specific success of three transplanting methods and the effect of planting time on the establishment of Zostera marina transplants. Mar Pollut Bull 54:1238–1248

    Article  Google Scholar 

  • Percuoco VP, Kalnejais LH, Officer LV (2015) Nutrient release from the sediments of the Great Bay Estuary, N.H. USA. Estuar Coast Shelf Sci 161:76–87

    Article  Google Scholar 

  • Pickerell CH, Schott S, Wyllie-Echeverria S (2005) Buoy-deployed seeding: Demonstration of a new eelgrass (Zostera marina L.) planting method. Ecol Eng 25:127–136

    Article  Google Scholar 

  • Shoji J, Morimoto M (2016) Changes in fish community in seagrass beds in Mangoku-ura Bay from 2009 to 2014, the period before and after the tsunami following the 2011 off the Pacific coast of Tohoku earthquake. J Oceanogr 72:91–98

    Article  Google Scholar 

  • Short FT, Dennison WC, Capone DG (1990) Phosphorus-limited growth of the tropical seagrass Syringodium filiforme in carbonate sediments. Mar Ecol Prog Ser 62:169–174

    Article  Google Scholar 

  • Slomp CP, Mort HP, Jilbert T, Reed DC, Gustafsson BG, Wolthers M (2013) Coupled dynamics of iron and phosphorus in sediments of an oligotrophic coastal basin and the impact of anaerobic oxidation of methane. PLOS ONE 8:e62386

    Article  Google Scholar 

  • Stratful I, Scrimshaw MD, Lester JN (2001) Conditions influencing the precipitation of magnesium ammonium phosphate. Water Res 35:4191–4199

    Article  Google Scholar 

  • Suzumura M (2006) Persulfate chemical wet oxidation method for the determination of particulate phosphorus in comparison with a high-temperature dry combustion method. Limnol Oceanogr Methods 6:619–629

    Article  Google Scholar 

  • Townsend EC, Fonseca MS (1998) Bioturbation as a potential mechanism influencing spatial heterogeneity of North Carolina. Mar Ecol Prog Ser 169:123–132

    Article  Google Scholar 

  • Tsukasaki A, Suzumura M, Nishijima W (2015) Fractionation of phosphorus in steelmaking slags and aquatic particulate materials using a sequential extraction technique. ISIJ Int 55:183–189

    Article  Google Scholar 

  • Ullman WJ, Aller RC (1982) Diffusion coefficients in nearshore sediments. Limnol Oceanogr 27:552–556

    Article  Google Scholar 

  • Ullman WJ, sandstrom MW (1987) Dissolved nutrient fluxes from the nearshore sediments of bowling Green Bay, central Great Barrier Reef lagoon (Australia). Estuar Coast Shelf Sci 24:289–303

    Article  Google Scholar 

  • van der Heide T, van Nes EH, van Katwijk MM, Olff H, Smolders AJP (2011) Positive feedbacks in seagrass ecosystems – evidence from large-scale empirical data. PLoS ONE 6(1):e16504. doi:10.1371/journal.pone.0016504

    Article  Google Scholar 

  • Waycott M, Duarte CM, Carruthers TJB, Orth RJ, Dennison WC, Olyarnik S, Calladine A, Fourqurean JW, Heck KLJ, Hughes AR, Kendrick GA, Kenworthy WJ, Short FT, Williams SL (2009) Accelerating loss of seagrasses across the globe threatens coastal ecosystems. Proc Natl Acad Sci USA 106:12377–12381

    Article  Google Scholar 

  • Whanpetch N, Nakaoka M, Mukai H, Suzuki T, Nojima S, Kawai T, Aryuthaka C (2010) Temporal changes in benthic communities of seagrass beds impacted by a tsunami in the Andaman Sea, Thailand. Estuar Coast Shelf Sci 87:246–252

    Article  Google Scholar 

  • Yamamoto M, Liu D (2013) Characterization of iron elution for seaweed bed restoration using a steelmaking slag and compost method. J Mater Cycles Waste Manag 15:264–268. doi:10.1007/s10163-013-0134-9

    Article  Google Scholar 

  • Yamamoto M, Fukushima M, Kiso E, Kato T, Shibuya M, Horiya S, Nishida A, Otsuka K, Komai T (2010) Application of iron humates to barren ground in a coastal area for restoring seaweed beds. J Chem Eng Japan 43:627–634

    Article  Google Scholar 

  • Yano H, Okuda T, Nakai S, Nishijima W, Tanimoto T, Asaoka S, Hayakawa S, Nakashima S (2016) Mechanisms of solidification and subsequent embrittlement of dephosphorization slag used in a subtidal zone as an alternative to sea sand and prevention of solidification by adding dredged soil. Clean Techn Environ Policy:1-10. doi: 10.1007/s10098-016-1110-6

  • Yozzo DJ, Wilber P, Will RJ (2004) Beneficial use of dredged material for habitat creation, enhancement, and restoration in New York-New Jersey Harbor. J Environ Manag 73:39–52

    Article  Google Scholar 

  • Zhang X, Matsuura H, Tsukihashi F (2015) Dissolution mechanisms of steelmaking slag–dredged soil mixture into seawater. J Sustain Metall:1-10. doi: 10.1007/s40831-015-0040-6

Download references

Acknowledgements

The authors thank the steel plant for providing us with slag. We would like to thank Dr. Namiha Yamada for her comments and suggestions. We are indebted to three anonymous reviewers for their valuable comments on the manuscript. This study was partially supported by a grant from the Environment Research and Technology Development Fund of the Ministry of the Environment, Japan (F1102).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ayumi Tsukasaki.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Tsukasaki, A., Tsurushima, N., Nakazato, T. et al. Nutrient dynamics in core sediments of an artificial basal medium prepared with steelmaking slag and dredged materials. J Oceanogr 72, 867–881 (2016). https://doi.org/10.1007/s10872-016-0384-y

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10872-016-0384-y

Keywords

Navigation