Journal of Oceanography

, Volume 72, Issue 5, pp 665–685 | Cite as

Biological organic carbon export estimated from the annual carbon budget observed in the surface waters of the western subarctic and subtropical North Pacific Ocean from 2004 to 2013

  • Masahide WakitaEmail author
  • Makio C. Honda
  • Kazuhiko Matsumoto
  • Tetsuichi Fujiki
  • Hajime Kawakami
  • Sayaka Yasunaka
  • Yoshikazu Sasai
  • Chiho Sukigara
  • Mario Uchimiya
  • Minoru Kitamura
  • Toru Kobari
  • Yoshihisa Mino
  • Akira Nagano
  • Shuichi Watanabe
  • Toshiro Saino
Special Section: Original Article K2S1 project


The annual flux of biologically produced organic carbon from surface waters is equivalent to annual net community production (NCP) at a steady state and equals the export of particulate and dissolved organic carbon (POC and DOC, respectively) to the ocean interior. NCP was estimated from carbon budgets of salinity-normalized dissolved inorganic carbon (nDIC) inventories at two time-series stations in the western subarctic (K2) and subtropical (S1) North Pacific Ocean. By using quasi-monthly biogeochemical observations from 2004 to 2013, monthly mean nDIC inventories were integrated from the surface to the annual maximum mixed layer depth and corrected for changes due to net air–sea CO2 exchange, net CaCO3 production, vertical diffusion from the upper thermocline, and horizontal advection. The annual organic carbon flux at K2 (1.49 ± 0.42 mol m−2 year−1) was lower than S1 (2.81 ± 0.53 mol m−2 year−1) (p < 0.001 based on t test). These fluxes consist of three components: vertically exported POC fluxes (K2: 1.43 mol m−2 year−1; S1: 2.49 mol m−2 year−1), vertical diffusive DOC fluxes (K2: 0.03 mol m−2 year−1; S1: 0.25 mol m−2 year−1), and suspended POC fluxes (K2: 0.03 mol m−2 year−1; S1: 0.07 mol m−2 year−1). The estimated POC export flux at K2 was comparable to the sum of the POC flux observed with drifting sediment traps and active carbon flux exported by migrating zooplankton. The export fluxes at both stations were higher than those reported at other time-series sites (ALOHA, the Bermuda Atlantic Time-series Study, and Ocean Station Papa).


Carbon cycle Dissolved inorganic carbon Dissolved organic carbon Particulate organic carbon Particulate inorganic carbon Annual flux of biologically produced organic and inorganic carbon Time-series observation Redfield stoichiometry 



We acknowledge the staff of the Mutsu Institute for Oceanography, the Japan Agency for Marine-Earth Science and Technology, and the captains and crews of the R/V Mirai for their kind cooperation in the collection of samples and hydrographic measurements during the 2010–2013 cruises. For their valuable comments and discussion, we thank Drs. K. Kimoto, K. Sasaoka, H. Uchida, S. Kouketsu, R. Inoue, C. Yoshikawa, Y. Nakano, M. Shigemitsu, A. Murata, and N. Harada of JAMSTEC; Dr. M. Aoyama of Fukushima University; Drs. H. Ogawa, R. Kaneko, H. Fukuda, K. Hamasaki, and T. Nagata of the University of Tokyo; and Dr. O. Abe of Nagoya University. We also thank those staff members of Marine Works Japan, Ltd., and Global Ocean Development Inc., who worked as marine technicians onboard the R/V Mirai. This work was partly supported by the Ministry of Education, Culture, Sports, Science and Technology (MEXT), Grant-in-Aid for Scientific Research on Innovative Areas (25106709) and KAKENHI (Grants-in-Aid for Scientific Research) (15H02835). Finally, we also express our deep thanks to three anonymous reviewers who provided us with many useful comments.


  1. Abell J, Emerson S, Renaud P (2000) Distribution of TOP, TON, and TOC in the North Pacific subtropical gyre: implications for nutrient supply in the surface ocean and remineralization in the upper thermocline. J Mar Res 58:203–222CrossRefGoogle Scholar
  2. Andreev A, Kusakabe M, Honda M, Murata A, Saito C (2002) Vertical fluxes of nutrients and carbon through the halocline in the western subarctic gyre calculated by mass balance. Deep Sea Res II 49:5577–5593CrossRefGoogle Scholar
  3. Antonov JI, Seidov D, Boyer TP, Locarnini RA, Mishonov AV, Garcia HE (2010) Salinity. In: Levitus S (ed) World Ocean Atlas 2009. NOAA Atlas NESDIS 71. US Government Printing Office, Washington, D.CGoogle Scholar
  4. Berger WH, Fisher K, Lai C, Wu G (1987) Ocean productivity and organic carbon flux. Part I. Overview and maps of primary production and export production. University of California, San Diego. SIO Reference 87–30Google Scholar
  5. Bishop JKB, Lam PJ, Wood TJ (2012) Getting good particles: accurate sampling of particles by large volume in-situ filtration. Limnol Oceanogr Methods 10:681–710CrossRefGoogle Scholar
  6. Bonjean F, Lagerloef GSE (2002) Diagnostic model and analysis of the surface currents in the Tropical Pacific Ocean. J Phys Oceanogr 32:2938–2954CrossRefGoogle Scholar
  7. Brewer PG, Wong TF, Bacon MP, Spencer DW (1975) An oceanic calcium problem? Earth Planet Sci Lett 26:81–87CrossRefGoogle Scholar
  8. Buesseler KO, Lamborg CH, Boyd PW, Lam PJ, Trull TW, Bidigare RR, Bishop JKB, Casciotti KL, Dehairs F, Elskens M, Honda MC, Karl DM, Siegel DA, Silver MW, Steinberg DK, Valdes J, Mooy BV, Wilson S (2007) Revisiting carbon flux through the ocean’s twilight zone. Science 316:567–570CrossRefGoogle Scholar
  9. Church M, Ducklow HW, Karl DM (2002) Multiyear increases in dissolved organic matter inventories at Station ALOHA in the North Pacific Subtropical Gyre. Limnol Oceanogr 47(1):1–10CrossRefGoogle Scholar
  10. Church M, Lomas MW, Muller-Karger F (2013) Sea change: charting the course for biogeochemical ocean time-series research in a new millennium. Deep Sea Res Part II 93:2–15. doi: 10.1016/j.dsr2.2013.01.035 CrossRefGoogle Scholar
  11. Dickson AG, Millero FJ (1987) A comparison of the equilibrium constants for the dissociation of carbonic acid in seawater media. Deep Sea Res Part A 34:1733–1743CrossRefGoogle Scholar
  12. Dlugokency EJ, Masarie KA, Lang PM, Tans PP (2014) NOAA Greenhouse Gas Reference from Atmospheric Carbon Dioxide Dry Air Mole Fractions from the NOAA ESRL Carbon Cycle Cooperative Global Air Sampling Network. Data Path:
  13. Emerson S (2014) Annual net community production and the biological carbon flux in the ocean. Glob Biogeochem Cycles. doi: 10.1002/2013GB004680 Google Scholar
  14. Emerson S, Quay PD, Stump C, Wilbur D, Schudlich R (1995) Chemical tracers of productivity and respiration in the subtropical Pacific. J Geophys Res 100:15873–15887CrossRefGoogle Scholar
  15. Farmer CT, Hansell DA (2007) Determination of dissolved organic carbon and total dissolved nitrogen in sea water. In: Dickson AG, Sabine CL, Christian JR (eds) Guide to best practices for ocean CO2 measurements, vol 3. PICES Special Publication, pp 191Google Scholar
  16. Fujiki T, Matsumoto K, Saino T, Wakita M, Watanabe S (2013) Distribution and photo-physiological condition of phytoplankton in the tropical and subtropical North Pacific. J Oceanogr 69:35–43. doi: 10.1007/s10872-012-0153-5 CrossRefGoogle Scholar
  17. Fujiki T, Matsumoto K, Mino Y, Sasaoka K, Wakita M, Kawakami H, Honda MC, Watanabe S, Saino T (2014) Seasonal cycle of phytoplankton community structure and photo-physiological state in the western subarctic gyre of the North Pacific. Limnol Oceanogr 59(3):887–900CrossRefGoogle Scholar
  18. Fukasawa M, Kawano T, Murata A, Uchida H, Doi T (2008) Carbon Dioxide, Hydrographic, and Chemical Data Obtained During the R/V Mirai Repeat Hydrography Cruise in the Pacific Ocean: CLIVAR CO2 Section P14_2007 (October 8–December 26, 2007). Carbon Dioxide Information Analysis Center, Oak Ridge National Laboratory, US Department of Energy, Oak Ridge, Tennessee. doi: 10.3334/CDIAC/otg.CLIVAR_P14_2007
  19. Garcia HE, Locarnini RA, Boyer TP, Antonov JI, Zweng MM, Baranova OK, Johnson DR (2010) Nutrients (phosphate, nitrate, silicate). In: Levitus S (ed) World Ocean Atlas 2009. NOAA Atlas NESDIS 71. US Government Printing Office, Washington, D.CGoogle Scholar
  20. Gruber N, Keeling CD, Stocker TF (1998) Carbon-13 constraints on the seasonal inorganic carbon budget at the BATS site in the northwestern Sargasso Sea. Deep Sea Res I 45:673–717CrossRefGoogle Scholar
  21. Hansell DA, Carlson CA (1998) Net community production of dissolved organic carbon. Glob Biogeochem Cycles 12(3):443–453CrossRefGoogle Scholar
  22. Hashihama F, Kinouchi S, Suwa S, Suzumura M, Kanda J (2013) Sensitive determination of enzymatically labile dissolved organic phosphorus and its vertical profiles in the oligotrophic western North Pacific and East China Sea. J Oceanogr 69:357–367. doi: 10.1007/s10872-013-0178-4 CrossRefGoogle Scholar
  23. Honda MC, Watanabe S (2010) Importance of biogenic opal as ballast of particulate organic carbon (POC) transport and existence of mineral ballast-associated and residual POC in the Western Pacific Subarctic Gyre. Geophys Res Lett 37:L02605. doi: 10.1029/2009GL041521 CrossRefGoogle Scholar
  24. Honda MC, Imai K, Nojiri Y, Hoshi F, Sugawara T, Kusakabe M (2002) The biological pump in the northwestern North Pacific based on fluxes and major components of particulate matter obtained by sediment trap experiments (1997–2000). Deep Sea Res II 49:5595–5625CrossRefGoogle Scholar
  25. Honda MC, Kawakami H, Matsumoto K, Wakita M, Fujiki T, Mino Y, Sukigara C, Kobari T, Uchimiya M, Kaneko R, Saino T (2016) Comparison of sinking particles in the upper 200 m between subarctic station K2 and subtropical station S1 based on drifting sediment trap experiments. J Oceanogr 72:373–386. doi: 10.1007/s10872-015-0280-x CrossRefGoogle Scholar
  26. Hosoda S, Ohira T, Sato K, Suga T (2010) Improved description of global mixed-layer depth using Argo profiling floats. J Oceanogr 66:773–787. doi: 10.1007/s10872-010-0063-3 CrossRefGoogle Scholar
  27. Inoue R, Kouketsu S (2016) Physical oceanographic conditions around the S1 mooring site. J Oceanogr 72:453–464. doi: 10.1007/s10872-015-0342-0 CrossRefGoogle Scholar
  28. Inoue R, M Honda, T Fujiki, K Matsumoto, S Kouketsu, T Suga, T Saino (2016) Western North Pacific Integrated Physical-Biogeochemical Ocean Observation Experiment (INBOX): Part 2. Biogeochemical responses to eddies and typhoons revealed from the S1 mooring and shipboard measurements. J Mar Res (in press)Google Scholar
  29. IPCC (2013) Climate change 2013: the physical science basis. In: Stocker TF, Qin D, Plattner G-K, Tignor M, Allen SK, Boschung J, Nauels A, Xia Y, Bex V, Midgley PM (eds) Contribution of working group I to the fifth assessment report of the Intergovernmental Panel on Climate Change. Cambridge University Press, Cambridge, p 1535Google Scholar
  30. Ishida H, Watanabe YW, Ishizaka J, Nakano T, Nagai N, Watanabe Y, Shimamoto A, Maeda N, Magi M (2009) Possibility of recent changes in vertical distribution and size composition of chlorophyll-a in the western North Pacific region. J Oceanogr 65:179–186CrossRefGoogle Scholar
  31. Kawakami H, Honda MC, Wakita M, Watanabe S (2007) Time-series observation of dissolved inorganic carbon and nutrients in the northwestern North Pacific. J Oceanogr 63:967–982CrossRefGoogle Scholar
  32. Kawakami H, Honda MC, Watanabe S, Saino T (2014) Time-series observation of 210Po and 210Pb radioactivity in the western North Pacific. J Radioanal Nucl Chem 301:461–468CrossRefGoogle Scholar
  33. Kawakami H, Honda MC, Matsumoto K, Wakita M, Kitamura M, Fujiki T, Watanabe S (2015) POC fluxes estimated from 234Th in late spring-early summer in the western subarctic North Pacific. J Oceanogr 71:311–324. doi: 10.1007/s10872-015-0290-8 CrossRefGoogle Scholar
  34. Kobari T, Tsuda T, Shinada A (2003) Functional roles of interzonal migrating mesozooplankton in the western subarctic Pacific. Prog Oceanogr 57:279–298CrossRefGoogle Scholar
  35. Kobari T, Steinberg DK, Ueda A, Tsuda A, Silver MW, Kitamura M (2008) Impacts of ontogenetically migrating copepods on downward carbon flux in the western subarctic Pacific Ocean. Deep-Sea Res II 55:1648–1660CrossRefGoogle Scholar
  36. Kobari T, Nakamura R, Unno K, Kitamura M, Tanabe K, Nagafuku H, Niibo A, Kawakami H, Matsumoto K, Honda MC (2016) Seasonal variability of carbon demand and flux by mesozooplankton communities at subarctic and subtropical sites in the western North Pacific Ocean. J Oceanogr. doi: 10.1007/s10872-015-0348-7 Google Scholar
  37. Lam PJ, Marchal O (2015) Insights into particle cycling from thorium and particle data. Ann Rev Mar Sci 7:159–184CrossRefGoogle Scholar
  38. Lee K (2001) Global net community production estimated form the annual cycle of surface water total dissolved inorganic carbon. Limnol Oceanogr 4:1287–1297CrossRefGoogle Scholar
  39. Lee K, Tong LT, Millero FJ, Sabine CL, Dickson AG, Goyet C, Park GH, Wanninkhof R, Feely RA, Key RM (2006) Global relationships of total alkalinity with salinity and temperature in surface waters of the world’s oceans. Geophys Res Lett 33:L19605. doi: 10.1029/2006GL027207 CrossRefGoogle Scholar
  40. Locarnini RA, Mishonov AV, Antonov JI, Boyer TP, Garcia HE (2010) Temperature. In: Levitus S (ed) World Ocean Atlas 2009. NOAA Atlas NESDIS 71. US Government Printing Office, Washington, D.CGoogle Scholar
  41. Matsumoto K, Honda MC, Sasaoka K, Wakita M, Kawakami H, Watanabe S (2014) Seasonal variability of primary production and phytoplankton biomass in the western Pacific subarctic gyre: control by light availability within the mixed layer. J Geophys Res Oceans 605:119. doi: 10.1002/2014JC009982 Google Scholar
  42. Matsumoto K, Abe O, Fujiki T, Sukigara C, Mino Y (2016) Primary productivity at the time-series stations in the northwestern Pacific Ocean: is the subtropical station unproductive? J Oceanogr 72:359–371. doi: 10.1007/s10872-016-0354-4 CrossRefGoogle Scholar
  43. Mehrbach C, Culberson CH, Hawley JE, Pytkowicz RM (1973) Measurement of the apparent dissociation constants of carbonic acid in seawater at atmospheric pressure. Limnol Oceanogr 18:897–907CrossRefGoogle Scholar
  44. Midorikawa T, Umeda T, Hiraishi N, Ogawa K, Nemoto K, Kudo N, Ishii M (2002) Estimation of seasonal net community production and air–sea CO2 flux based on the carbon budget above the temperature minimum layer in the western subarctic North Pacific. Deep Sea Res I 49:339–362CrossRefGoogle Scholar
  45. Midorikawa T, Ishii M, Kosugi N, Sasano D, Nakano T, Saito S, Sakamoto N, Nakano H, Inoue HY (2012) Recent deceleration of oceanic pCO2 increase in the western North Pacific in winter. Geophys Res Lett 39:L12601. doi: 10.1029/2012GL051665 CrossRefGoogle Scholar
  46. Mori K, Uehara K, Kameda T, Kakehi S (2008) Direct measurements of dissipation rate of turbulent kinetic energy of North Pacific subtropical water. Geophys Res Lett 35:L05601. doi: 10.1029/2007GL032867 CrossRefGoogle Scholar
  47. Munro DR, Quay PD, Juranek LW, Goericke R (2013) Biological production rates off the Southern California coast estimated from triple O2 isotopes and O2: Ar gas ratios. Limnol Oceanogr 58(4):1312–1328CrossRefGoogle Scholar
  48. Nagano A, Wakita M, Watanabe S (2016) Dichothermal layer deepening in relation with halocline depth change associated with northward shrinkage of North Pacific western subarctic gyre in early 2000s. Ocean Dyn. doi: 10.1007/s10236-015-0917-8 Google Scholar
  49. Nakaoka S, Telszewski M, Nojiri Y, Yasunaka S, Miyazaki C, Mukai H, Usui N (2013) Estimating temporal and spatial variation of sea surface pCO2 in the North Pacific using a self organizing map neural network technique. Biogeosciences 10:6093–6106. doi: 10.5194/bg-10-6093-2013 CrossRefGoogle Scholar
  50. Nakatsuka T, Handa N, Harada N, Sugimoto T, Imaizumi S (1998) Origin and decomposition of sinking particulate organic matter in the deep water column inferred from the vertical distributions of its δ15N, δ13C and δ14C. Deep Sea Res I 44:1957–1979CrossRefGoogle Scholar
  51. Nishioka J, Nakatsuka T, Watanabe YW, Yasuda I, Kuma K, Ogawa H, Ebuchi N, Scherbinin A, Volkov YN, Shiraiwa T, Wakatsuchi M (2013) Intensive mixing along an island chain controls oceanic biogeochemical cycles. Glob Biogeochem Cycles 27:1–10. doi: 10.1002/gbc.20088 CrossRefGoogle Scholar
  52. Ogawa H, Usui T, Koike I (2003) Distribution of dissolved organic carbon in the East China Sea. Deep Sea Res II 50:353–366CrossRefGoogle Scholar
  53. Ono T, Tadokoro K, Midorikawa T, Nishioka J, Saino T (2002) Multi-decadal decrease of net community production in western subarctic North Pacific. Geophys Res Lett. doi: 10.1029/2001GL014332 Google Scholar
  54. Onogi K, Tsutsui J, Koide H, Sakamoto M, Kobayashi S, Hatsushika H, Matsumoto T, Yamazaki N, Kamahori H, Takahashi K, Kadokura S, Wada K, Kato K, Oyama R, Ose T, Mannoji N, Taira R (2007) The JRA-25 reanalysis. J Meteorol Soc Jpn 85:369–432CrossRefGoogle Scholar
  55. Pierrot DEL, Wallace DWR (2006) MS Excel program developed for CO2 System Calculations, ORNL/CDIAC-105, Oak Ridge, Tennessee, Carbon Dioxide Information Analysis Center, Oak Ridge National Laboratory, US Department of EnergyGoogle Scholar
  56. Qiu B, Hacker P, Chen S, Donohue KA, Watts DR, Mitsudera H, Hogg NG, Jayne SR (2006) Observation of the subtropical mode water evolution from the Kuroshio extension system study. J Phys Oceanogr 36:457–473CrossRefGoogle Scholar
  57. Quay P, Stutsman J (2003) Surface layer carbon budget for the subtropical N. Pacific: δ13C constraints at station ALOHA. Deep Sea Res I 50:1045–1061CrossRefGoogle Scholar
  58. Sarmiento JL, Gruber N (2006) Ocean biogeochemical dynamics. Princeton University Press, Princeton, p 526Google Scholar
  59. Shiozaki T, Furuya K, Kodama T, Kitajima S, Takeda S, Takemura T, Kanda J (2010) New production of N2 fixation in the western and central Pacific Ocean and its marginal seas. Glob Biogeochem Cycles. doi: 10.1029/2009GB003620 Google Scholar
  60. Steinberg DK, VanMooy BAS, Buesseler KO, Boyd PW, Kobari T, Karl DM (2008) Microbial vs zooplankton control of sinking particle flux in the ocean’s twilight zone. Limnol Oceanogr 53:1327–1338CrossRefGoogle Scholar
  61. Suga T, Moteki K, Aoki Y (2004) The North Pacific climatology of winter mixed layer and mode waters. J Phys Oceanogr 34:3–22CrossRefGoogle Scholar
  62. Sukigara C, Suga T, Saino T, Toyama K, Yanagimoto D, Hanawa K, Shikama N (2011) Biogeochemical evidence of large diapycnal diffusivity associated with the subtropical mode water of the North Pacific. J Oceanogr 67:77–85CrossRefGoogle Scholar
  63. Sukigara C, Suga T, Toyama K, Oka E (2014) Biogeochemical responses associated with the passage of a cyclonic eddy based on shipboard observations in the western North Pacific. J Oceanogr 70:435–445CrossRefGoogle Scholar
  64. Sweeney C, Gloor E, Jacobson AR, Key RM, McKinley G, Sarmiento JL, Wanninkhof R (2007) Constraining global air–sea gas exchange for CO2 with recent bomb 14C measurements. Glob Biogeochem Cycles. doi: 10.1029/2006GB002784 Google Scholar
  65. Takahashi T, Sutherland SC, Wanninkhof R, Sweeney C, Feely RA et al (2009) Climatological mean and decadal change in surface ocean pCO2, and net sea–air CO2 flux over the global oceans. Deep Sea Res II 56:554–577CrossRefGoogle Scholar
  66. Takahashi T, Sutherland SC, Chipman DW, Goddard JG, Ho C, Newberger T, Sweeney C, Munro DR (2014) Climatological distributions of pH, pCO2, total CO2, alkalinity, and CaCO3 saturation in the global surface ocean, and temporal changes at selected locations. Mar Chem 164:95–125CrossRefGoogle Scholar
  67. Timothy DA, Wong CS, Barwell-Clarke JE, Page JS, White LA, Macdonald RW (2013) Climatology of sediment flux and composition in the subarctic Northwest Pacific Ocean with biogeochemical implications. Prog Oceanogr 116:95–129CrossRefGoogle Scholar
  68. Tsurushima N, Nojiri Y, Imai K, Watanabe S (2002) Seasonal variations of carbon dioxide system and nutrients in the surface mixed layer at Station KNOT (44°N, 155°E) in the subarctic North Pacific. Deep Sea Res Part II 49:5377–5394CrossRefGoogle Scholar
  69. Wakita M, Watanabe S, Murata A, Tsurushima N, Honda MC (2010a) Decadal change of dissolved inorganic carbon in the subarctic western North Pacific Ocean. Tellus B 62:608–620. doi: 10.1111/j.1600-0889.2010.00476.x CrossRefGoogle Scholar
  70. Wakita M, Watanabe S, Murata A, Honda M (2010b) Hydrographic and CO2 Data Report at Station K2 during the 1999-2008 cruises. Carbon Dioxide Information Analysis Center, Oak Ridge National Laboratory, US Department of Energy, Oak Ridge, Tennessee. doi: 10.3334/CDIAC/otg.TSM_K2_1999-2008
  71. Wakita M, Watanabe S, Honda MC, Nagano A, Kimoto K, Matsumoto K, Kawakami H, Fujiki T, Kitamura M, Sasaki K, Sasaoka K, Nakano Y, Murata A (2013) Ocean acidification from 1997 to 2011 in the subarctic western North Pacific Ocean. Biogeosciences 10:7817–7827. doi: 10.5194/bg-10-7817-2013 CrossRefGoogle Scholar
  72. Watanabe YW, Shigemitsu M, Ujiie T, Minami H (2014) Decadal shift of biogenic sinking particle flux in the western North Pacific subpolar region. Geophys Res Lett. doi: 10.1002/2013GL059142 Google Scholar
  73. Weiss RF (1974) Carbon dioxide in water and seawater: the solubility of a non-ideal gas. Mar Chem 2:203–215CrossRefGoogle Scholar
  74. Wong CS, Waser NAD, Nojiri Y, Johnson WK, Whitney FA, Page JS, Zeng J (2002a) Seasonal and interannual invariability in the distribution of surface nutrients and dissolved inorganic carbon in the northern North Pacific: influence of El Nino. J Oceanogr 58:227–243CrossRefGoogle Scholar
  75. Wong CS, Waser NAD, Whitney FA, Johnson WK, Page JS (2002b) Time-series study of the biogeochemistry of the North East subarctic Pacific: reconciliation of the Corg/N remineralization and uptake ratios with the Redfield ratios. Deep Sea Res II 49:5717–5738CrossRefGoogle Scholar
  76. Wong CS, Waser NAD, Nojiri Y, Whitney FA, Page JS, Zeng J (2002c) Seasonal cycles of nutrients and dissolved inorganic carbon at high and mid latitudes in the North pacific Ocean during the Skaugran cruises: determination of new production and nutrient uptake ratios. Deep Sea Res II 49:5317–5338CrossRefGoogle Scholar
  77. Yasunaka S, Nojiri Y, Nakaoka S, Ono T, Mukai H, Usui N (2013) Monthly maps of sea surface dissolved inorganic carbon in the North Pacific: basin-wide distribution and seasonal variation. J Geophys Res Oceans 118:3843–3850. doi: 10.1002/jgrc.20279 CrossRefGoogle Scholar
  78. Yasunaka S, Nojiri Y, Nakaoka S, Ono T, Whitney FA, Telszewski M (2014) Mapping of sea surface nutrients in the North Pacific: basin-wide distribution and seasonal to interannual variability. J Geophys Res Oceans 119:7756–7771. doi: 10.1002/2014JC010318 CrossRefGoogle Scholar

Copyright information

© The Oceanographic Society of Japan and Springer Japan 2016

Authors and Affiliations

  • Masahide Wakita
    • 1
    Email author
  • Makio C. Honda
    • 2
  • Kazuhiko Matsumoto
    • 2
  • Tetsuichi Fujiki
    • 2
  • Hajime Kawakami
    • 1
  • Sayaka Yasunaka
    • 2
  • Yoshikazu Sasai
    • 2
  • Chiho Sukigara
    • 3
  • Mario Uchimiya
    • 4
    • 5
  • Minoru Kitamura
    • 2
  • Toru Kobari
    • 6
  • Yoshihisa Mino
    • 3
  • Akira Nagano
    • 2
  • Shuichi Watanabe
    • 1
  • Toshiro Saino
    • 2
  1. 1.Mutsu Institute for OceanographyJapan Agency for Marine-Earth Science and TechnologyMutsuJapan
  2. 2.Research and Development Center for Global ChangeJapan Agency for Marine-Earth Science and TechnologyYokosukaJapan
  3. 3.Hydrospheric Atmospheric Research CenterNagoya UniversityNagoyaJapan
  4. 4.National Institute of Polar ResearchTachikawaJapan
  5. 5.Atmosphere and Ocean Research InstituteThe University of TokyoKashiwaJapan
  6. 6.Faculty of FisheriesKagoshima UniversityKagoshimaJapan

Personalised recommendations