Reconstruction and analysis of long-term satellite-derived sea surface temperature for the South China Sea

Abstract

Sea surface temperature (SST) is one of the key variables often used to investigate ocean dynamics, ocean-atmosphere interaction, and climate change. Unfortunately, the SST data sources in the South China Sea (SCS) are not abundant due to sparse measurements of in situ SST and a high percentage of missing data in the satellite-derived SST. Therefore, SST data sets with low resolution and/or a short-term period have often been used in previous researches. Here we used Data INterpolating Empirical Orthogonal Functions, a self-consistent and parameter-free method for filling in missing data, to reconstruct the daily nighttime 4-km AVHRR Pathfinder SST for the long-term period spanning from 1989 to 2009. In addition to the reconstructed field, we also estimated the local error map for each reconstructed image. Comparisons between the reconstructed and other data sets (satellite-derived microwave and in situ SSTs) show that the results are reliable for use in many different researches, such as validating numerical models, or identifying and tracking meso-scale oceanic features. Moreover, the Empirical Orthogonal Function (EOF) analysis of the reconstructed SST and the reconstructed SST anomalies clearly shows the subseasonal, seasonal, and interannual variability of SST under the influence of monsoon and El Niño-Southern Oscillation (ENSO), as well as reveals some oceanic features that could not be captured well in previous EOF analyses. The SCS SST often lags ENSO by about half a year. However, in this study, we see that the time lag changes with the frequencies of the SST variability, from 1 to 6 months.

This is a preview of subscription content, log in to check access.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19

References

  1. Alvera-Azcárate A, Barth A, Rixen M, Beckers JM (2005) Reconstruction of incomplete oceanographic data sets using empirical orthogonal functions: application to the Adriatic sea surface temperature. Ocean Model 9(4):325–346. doi:10.1016/j.ocemod.2004.08.001

    Article  Google Scholar 

  2. Alvera-Azcárate A, Barth A, Sirjacobs D, Beckers JM (2009) Enhancing temporal correlations in EOF expansions for the reconstruction of missing data using DINEOF. Ocean Sci Discuss 6(2):1547–1568

    Article  Google Scholar 

  3. Barron CN, Kara AB (2006) Satellite-based daily SSTs over the global ocean. Geophys Res Lett 33(15). doi:10.1029/2006GL026356

  4. Beckers JM, Rixen M (2003) EOF calculations and data filling from incomplete oceanographic datasets. J Atmos Ocean Technol 20(12):1839–1856

    Article  Google Scholar 

  5. Beckers JM, Barth A, Alvera-Azcárate A (2006) DINEOF reconstruction of clouded images including error maps–application to the sea surface temperature around Corsican Island. Ocean Sci 2(2):183–199. doi:10.5194/os-2-183-2006

    Article  Google Scholar 

  6. Brankart JM, Brasseur P (1996) Optimal analysis of in situ data in the western Mediterranean using statistics and cross-validation. J Atmos Ocean Technol 13(2):477–491

    Article  Google Scholar 

  7. Casey KS, Brandon TB, Cornillon P, Evans R (2010) The past, present, and future of the AVHRR Pathfinder SST program. In: Barale V, Gower J, Alberotanza L (eds) Oceanography from space: Revisited, Springer. doi:10.1007/978-90-481-8681-5_16

  8. Chao SY, Shaw PT, Wu SY (1996) El Niño modulation of the South China Sea circulation. Prog Oceanogr 38(1):51–93. doi:10.1016/S0079-6611(96)00010-9

    Article  Google Scholar 

  9. Chu PC, Lu S, Chen Y (1997) Temporal and spatial variabilities of the South China Sea surface temperature anomaly. J Geophys Res Oceans 102(C9):20937–20955. doi:10.1029/97JC00982

    Article  Google Scholar 

  10. Chu PC, Edmons NL, Fan C (1999) Dynamical mechanisms for the South China Sea seasonal circulation and thermohaline variabilities. J Phys Oceanogr 29(11):2971–2989

    Article  Google Scholar 

  11. Dee DP, Uppala SM, Simmons AJ, Berrisford P, Poli P, Kobayashi S, Andrae U, Balmaseda MA, Balsamo G, Bauer P, Bechtold P, Beljaars ACM, van de Berg L, Bidlot J, Bormann N, Delsol C, Dragani R, Fuentes M, Geer AJ, Haimberger L, Healy SB, Hersbach H, Hólm EV, Isaksen L, Kållberg P, Köhler M, Matricardi M, McNally AP, Monge-Sanz BM, Morcrette JJ, Park BK, Peubey C, de Rosnay P, Tavolato C, Thépaut JN, Vitart F (2011) The ERA-Interim reanalysis: configuration and performance of the data assimilation system. Q J R Meteorol Soc 137(656):553–597. doi:10.1002/qj.828

    Article  Google Scholar 

  12. Ding Y, Fu D, Wei Z, Mao Z, Zou J (2008) Reconstruction of incomplete satellite oceanographic data sets based on EOF and Kriging methods. In: Proceedings of SPIE 7109, image and signal processing for remote sensing XIV, 710913 (October 10, 2008), vol 7109. doi:10.1117/12.799894

  13. Dippner J, Nguyen K, Hein H, Ohde T, Loick N (2007) Monsoon-induced upwelling off the Vietnamese coast. Ocean Dyn 57:46–62. doi:10.1007/s10236-006-0091-0

    Article  Google Scholar 

  14. Donlon CJ, Minnett PJ, Gentemann C, Nightingale TJ, Barton IJ, Ward B, Murray MJ (2002) Toward improved validation of satellite sea surface skin temperature measurements for climate research. J Clim 15(4):353–369

    Article  Google Scholar 

  15. Emery WJ, Thomson R (2001) Data analysis methods in physical oceanography. Elsevier, Amsterdam

    Google Scholar 

  16. Fang G, Chen H, Wei Z, Wang Y, Wang X, Li C (2006) Trends and interannual variability of the South China Sea surface winds, surface height, and surface temperature in the recent decade. J Geophys Res 111:C11S16. doi:10.1029/2005JC003276

  17. Fang G, Wang G, Fang Y, Fang W (2012) A review on the South China Sea western boundary current. Acta Oceanol Sin 31:1–10. doi:10.1007/s13131-012-0231-y

    Article  Google Scholar 

  18. Fang W, Fang G, Shi P, Huang Q, Xie Q (2002) Seasonal structures of upper layer circulation in the southern South China Sea from in situ observations. J Geophys Res Oceans 107(C11):23-1–23-12. doi:10.1029/2002JC001343,3202

  19. Gan J, Qu T (2008) Coastal jet separation and associated flow variability in the southwest South China Sea. Deep Sea Res Part I Oceanogr Res Papers 55(1):1–19. doi:10.1016/j.dsr.2007.09.008

    Article  Google Scholar 

  20. Guan L, Kawamura H (2003) SST availabilities of satellite infrared and microwave measurements. J Oceanogr 59(2):201–209. doi:10.1023/A:1025543305658

    Article  Google Scholar 

  21. Hong H, Zhang C, Shang S, Huang B, Li Y, Li X, Zhang S (2009) Interannual variability of summer coastal upwelling in the Taiwan Strait. Cont Shelf Res 29(2):479–484. doi:10.1016/j.csr.2008.11.007

    Article  Google Scholar 

  22. Kilpatrick KA, Podestá GP, Evans R (2001) Overview of the NOAA/NASA advanced very high resolution radiometer pathfinder algorithm for sea surface temperature and associated matchup database. J Geophys Res Oceans 106(C5):9179–9197. doi:10.1029/1999JC000065

    Article  Google Scholar 

  23. Klein SA, Soden BJ, Lau NC (1999) Remote sea surface temperature variations during ENSO: evidence for a tropical atmospheric bridge. J Clim 12(4):917–932

    Article  Google Scholar 

  24. Kuo NJ, Zheng Q, Ho CR (2000) Satellite observation of upwelling along the western coast of the South China Sea. Remote Sens Environ 74(3):463–470. doi:10.1016/S0034-4257(00)00138-3

    Article  Google Scholar 

  25. Kuo NJ, Zheng Q, Ho CR (2004) Response of Vietnam coastal upwelling to the 1997–1998 ENSO event observed by multisensor data. Remote Sens Environ 89(1):106–115. doi:10.1016/j.rse.2003.10.009

    Article  Google Scholar 

  26. Kuo NJ, Ho CR, Lo YT, Huang SJ, Chang L (2009) Analysis of chlorophyll-a concentration around the South China Sea from ocean color images. In: OCEANS 2009—EUROPE, pp 1–4. doi:10.1109/OCEANSE.2009.5278318

  27. Li Y, Peng S, Yang W, Wang D (2012) Numerical simulation of the structure and variation of upwelling off the east coast of Hainan Island using QuikSCAT winds. Chin J Oceanol Limnol 30(6):1068–1081. doi:10.1007/s00343-012-1275-8

    Article  Google Scholar 

  28. Lin CY, Ho CR, Zheng Q, Huang SJ, Kuo NJ (2011) Variability of sea surface temperature and warm pool area in the South China Sea and its relationship to the western Pacific warm pool. J Oceanogr 67:719–724. doi:10.1007/s10872-011-0072-x

    Article  Google Scholar 

  29. Liu Q, Jiang X, Xie SP, Liu WT (2004) A gap in the Indo-Pacific warm pool over the South China Sea in boreal winter: Seasonal development and interannual variability. J Geophys Res Oceans 109(C7). doi:10.1029/2003JC002179

  30. Locarnini RA, Mishonov AV, Antonov JI, Boyer TP, Garcia HE, Baranova OK, Zweng MM, Johnson DR (2010) World ocean atlas 2009. Temperature, vol 1. In: Levitus S (ed) NOAA Atlas NESDIS 68, Ed., U.S. Government Printing Office, Washington, DC, p 182

  31. Lü X, Qiao F, Wang G, Xia C, Yuan Y (2008) Upwelling off the west coast of Hainan Island in summer: its detection and mechanisms. Geophys Res Lett 35(2). doi:10.1029/2007GL032440

  32. Qiu C, Wang D, Kawamura H, Guan L, Qin H (2009) Validation of AVHRR and TMI-derived sea surface temperature in the northern South China Sea. Cont Shelf Res 29(20):2358–2366. doi:10.1016/j.csr.2009.10.009

    Article  Google Scholar 

  33. Qu T (2001) Role of ocean dynamics in determining the mean seasonal cycle of the South China Sea surface temperature. J Geophys Res Oceans 106(C4):6943–6955. doi:10.1029/2000JC000479

    Article  Google Scholar 

  34. Qu T, Mitsudera H, Yamagata T (2000) Intrusion of the north Pacific waters into the South China Sea. J Geophys Res Oceans 105(C3):6415–6424. doi:10.1029/1999JC900323

    Article  Google Scholar 

  35. Qu T, Kim YY, Yaremchuk M, Tozuka T, Ishida A, Yamagata T (2004) Can Luzon Strait transport play a role in conveying the impact of ENSO to the South China Sea? J Clim 17(18):3644–3657

    Article  Google Scholar 

  36. Shaw PT, Chao SY (1994) Surface circulation in the South China Sea. Deep Sea Res Part I Oceanogr Res Papers 41(1112):1663–1683. doi:10.1016/0967-0637(94)90067-1

    Article  Google Scholar 

  37. Sorjamaa A, Lendasse A, Cornet Y, Deleersnijder E (2010) An improved methodology for filling missing values in spatiotemporal climate data set. Comput Geosci 14(1):55–64. doi:10.1007/s10596-009-9132-3

    Article  Google Scholar 

  38. Su J, Pohlmann T (2009) Wind and topography influence on an upwelling system at the eastern Hainan coast. J Geophys Res Oceans 114(C6). doi:10.1029/2008JC005018

  39. Tang D, Kester DR, Ni IH, Kawamura H, Hong H (2002) Upwelling in the Taiwan Strait during the summer monsoon detected by satellite and shipboard measurements. Remote Sens Environ 83(3):457–471. doi:10.1016/S0034-4257(02)00062-7

    Article  Google Scholar 

  40. Tang D, Kawamura H, Guan L (2004) Long-time observation of annual variation of Taiwan Strait upwelling in summer season. Adv Space Res 33(3):307–312. doi:10.1016/S0273-1177(03)00477-0

    Article  Google Scholar 

  41. Toumazou V, Cretaux JF (2001) Using a Lanczos eigensolver in the computation of empirical orthogonal functions. Mon Weather Rev 129(5):1243–1250

    Article  Google Scholar 

  42. Trenberth KE (1997) The definition of El Niño. Bull Am Meteorol Soc 78(12):2771–2777

    Article  Google Scholar 

  43. Wang B, Wu R, Fu X (2000) Pacific-East Asian teleconnection: how does ENSO affect east Asian climate? J Clim 13(9):1517–1536

    Article  Google Scholar 

  44. Wang C (2002) Atmospheric circulation cells associated with the El Niño-Southern Oscillation. J Clim 15(4):399–419

    Article  Google Scholar 

  45. Wang C, Wang W, Wang D, Wang Q (2006) Interannual variability of the South China Sea associated with El Niño. J Geophys Res Oceans 111(C3). doi:10.1029/2005JC003333

  46. Wang J, Tang D, Sui Y (2010) Winter phytoplankton bloom induced by subsurface upwelling and mixed layer entrainment southwest of Luzon Strait. J Mar Syst 83(34):141–149. doi:10.1016/j.jmarsys.2010.05.006

    Article  Google Scholar 

  47. Wang W, Wang C (2006) Formation and decay of the spring warm pool in the South China Sea. Geophys Res Lett 33(2). doi:10.1029/2005GL025097

  48. Wu R, Chen Z (2015) Intraseasonal SST variations in the South China Sea during boreal winter and impacts of the East Asian winter monsoon. J Geophys Res Atmos 120(12):5863–5878. doi:10.1002/2015JD023368

    Article  Google Scholar 

  49. Wu R, Chen W, Wang G, Hu K (2014) Relative contribution of ENSO and East Asian winter monsoon to the South China Sea SST anomalies during ENSO decaying years. J Geophys Res Atmos 119(9):5046–5064. doi:10.1002/2013JD021095

    Article  Google Scholar 

  50. Wyrtki K (1961) Physical Oceanography of the Southeast Asian waters: scientific results of marine investigations of the South China Sea and the Gulf of Thailand 1959–1961, vol 2. Naga Report, Scripps Institution of Oceanography, La Jolla

    Google Scholar 

  51. Xie SP, Xie Q, Wang D, Liu WT (2003) Summer upwelling in the South China Sea and its role in regional climate variations. J Geophys Res Oceans 108(C8). doi:10.1029/2003JC001867

  52. Xie SP, Chang CH, Xie Q, Wang D (2007) Intraseasonal variability in the summer South China Sea: Wind jet, cold filament, and recirculations. J Geophys Res Oceans 112(C10). doi:10.1029/2007JC004238

  53. Yan J (1997) Observational study on the onset of the South China Sea southwest monsoon. Adv Atmos Sci 14(2):277–287. doi:10.1007/s00376-997-0026-9

    Article  Google Scholar 

  54. Yan Y, Ling Z, Chen C (2015) Winter coastal upwelling off northwest Borneo in the South China Sea. Acta Oceanol Sin 34(1):3–10. doi:10.1007/s13131-015-0590-2

    Article  Google Scholar 

Download references

Acknowledgments

Daily nighttime 4-km AVHRR Pathfinder SST data used in this study were obtained from the Physical Oceanography Distributed Active Archive Center (PODAAC) at the NASA Jet Propulsion Laboratory (ftp://podaac-ftp.jpl.nasa.gov). TMI data produced by Remote Sensing Systems and sponsored by the NASA Earth Science MEaSUREs DISCOVER Project are available at http://www.remss.com. In situ data were downloaded from NOAA National Oceanographic Data Center (NODC), World Ocean Database 2009 (WOD09) (http://www.nodc.noaa.gov). Wind data were provided by the European Centre for Medium-Range Weather Forecasts (ECMWF) (http://data-portal.ecmwf.int). The Niño 3 SST was downloaded from ftp://ftp.cpc.ncep.noaa.gov/wd52dg/data/indices. Calculations were run on the super-computer NIC3 of the University of Liège, and HMEM of the Université catholique de Louvain (CISM/UCL) and the Consortium des Équipements de Calcul Intensif en Fédération Wallonie Bruxelles (CÉCI) funded by the Fond de la Recherche Scientifique de Belgique (FRS-FNRS). We are grateful to the anonymous reviewers for valuable comments on the manuscript. Suggestions by Prof. Joji Ishizaka are appreciated. This study was carried out within the context of the BESST (SR/12/158) project funded by the Belgian Science Policy (BELSPO) within the framework of the Research Program for Earth Observation STEREO II. The Vietnam Ministry of Education and Training is gratefully acknowledged for funding H.-N.T. Huynh’s Ph.D. scholarship.

Author information

Affiliations

Authors

Corresponding author

Correspondence to Hong-Ngu T. Huynh.

Appendix

Appendix

When using the reconstructed SST, perhaps the users would also like to know the local error map associated with each reconstructed image. Therefore, we will concisely present the method and parameters that were used to compute the error field. For more detailed descriptions, please refer to Beckers et al. (2006).

Beckers et al. (2006) proved that a very efficient least-square fit of EOF amplitudes to an observed subset of data is equivalent to optimal interpolation (OI) if the filtered covariance matrix of DINEOF is used as the ad hoc covariance of OI. Hence the error estimates of OI can be used as a proxy for the error fields of DINEOF. To calculate the error field, a method similar to the least-square fit, instead of an equivalent standard OI error calculation, is applied due to its reduced calculation cost.

In standard OI, the covariance matrix between data points is the sum of the observational error-covariance matrix R and the target field-covariance matrix B. The observational errors and target field are assumed to be uncorrelated. We can use the covariance matrix based on SVD decomposition from DINEOF, with the N-retained significant EOFs (\(N = 33\)), in an OI approach. If we define scaled spatial EOFs

$$\begin{aligned} {\mathbf{L }} = \frac{1}{\sqrt{n}}{\mathbf{U }}^N{\mathbf{S }}^N \end{aligned}$$
(3)

where L is a matrix with N columns, each of which is the scaled spatial EOF, this leads to the field covariance

$$\begin{aligned} {\mathbf{B }} = \frac{1}{n}{\mathbf{X }}^N{{\mathbf{X }}^N}^{\mathrm{T}} = {\mathbf{L }}{\mathbf{L }}^{\mathrm{T}} \end{aligned}$$
(4)

DINEOF cannot for certain separate noise from signal. It can only say via the cross-validation technique used, that with the amount of data available, no more useful information can be extracted and kept in the retained EOFs. Therefore, if we consider that the N-retained EOFs contain signals and the remaining EOFs contain noise, then the noise can be estimated as the difference between the original values x and the reconstructed ones \(x^r\)

$$\begin{aligned} {\mu }^2 = \frac{1}{m_{\mathrm{p}}}\sum _{x_{ij}\;{\mathrm{present}}} (x_{ij}^2 - {x_{ij}^r}^2) \end{aligned}$$
(5)

with \(m_{\mathrm{p}}\) being present pixels. We can use this equation to estimate the error variance from the variance filtered by the EOF reconstruction. Assuming the observational error uncorrelated, the error-covariance matrix R has the diagonal form

$$\begin{aligned} {\mathbf{R }} = {\mu }^2{\mathbf{I }} \end{aligned}$$
(6)

where I is the identity matrix.

The covariance matrix can be calculated for a given image

$$\begin{aligned} {\mathbf{C }} = {\mu }^2({\mathbf{L }}_{\mathrm{p}}^{\mathrm{T}} {\mathbf{L }}_{\mathrm{p}} + {\mu }^2{\mathbf{I }}_{N})^{-1} \end{aligned}$$
(7)

where \({\mathbf{L }}_{\mathrm{p}}\) are the EOF values of points for which data are available.

For satellite data, atmospheric corrections and associated errors are likely to contain spatial correlations. Therefore, \({\mu _{\mathrm{eff}}}^2\) is used instead of \({\mu }^2\)

$$\begin{aligned} {\mu _{\mathrm{eff}}}^2 = {\mu }^2L^2/(\Delta x \Delta y) \end{aligned}$$
(8)

where L is the correlation length of the observational error, \(\Delta x\) and \(\Delta y\) are the zonal and meridional resolution, respectively. Different values L were used until the error fields from the analysis gave on average a value of 0.46 °C under the clouded regions. Here we chose \(L = 88\) km.

The error variance in each grid point as the quadratic form is then calculated

$$\begin{aligned} {\epsilon }^2 ={\mathbf{i }}^{\mathrm{T}} {\mathbf C} i \end{aligned}$$
(9)

where i is column array of dimension \(N\times 1\) containing the values of the N scaled EOFs at grid point i (irrespectively of whether or not the data are missing).

A sample of error map is shown in Fig. 20.

Fig. 20
figure20

An example of error map of the reconstructed SST on 30 June 2009: a the original AVHRR SST, b the reconstructed AVHRR SST, and c the error map of the reconstructed SST

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Huynh, H.T., Alvera-Azcárate, A., Barth, A. et al. Reconstruction and analysis of long-term satellite-derived sea surface temperature for the South China Sea. J Oceanogr 72, 707–726 (2016). https://doi.org/10.1007/s10872-016-0365-1

Download citation

Keywords

  • South China Sea
  • AVHRR Pathfinder SST
  • Subseasonal
  • Seasonal and interannual variability
  • Monsoon
  • ENSO
  • DINEOF