Skip to main content

Advertisement

Log in

Impact of intraseasonal salinity variations on sea surface temperature in the eastern equatorial Indian Ocean

  • Original Article
  • Published:
Journal of Oceanography Aims and scope Submit manuscript

Abstract

A systematic salinity variation in the upper ocean may have an impact on air–sea interactions through a change in ocean stratification and hence on the oceanic response to atmospheric forcing. In this study, we evaluate the possible role of salinity variation in the oceanic response to intraseasonal atmospheric forcing, by investigating the ocean temperature and salinity variation in the eastern Indian Ocean. We primarily used data from three moored buoys located in an area with a large salinity gradient in the eastern equatorial Indian Ocean. Observed upper-layer salinity variation shows significant spectral peaks at intraseasonal time scales. Analysis indicates that surface zonal currents mainly produce the intraseasonal salinity variation through zonal advection with these currents induced by the Madden–Julian Oscillation (MJO). Composite analyses focusing on 35 significant MJO events during 2002–2012 confirmed that intraseasonal atmospheric forcing resulted in variations of net surface heat flux, mixed layer temperature and salinity, and mixed layer depth. We also found that a large salinity change could increase the amplitude of mixed layer temperature variation by changing the mixed layer depth. A possible process by which intraseasonal salinity variation could affect sea surface temperature is discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

References

  • Akima H (1970) A new method of interpolation and smooth curve fitting based on local procedures. J Assoc Comput Mach 17:589–602

    Article  Google Scholar 

  • Bergman JW, Hendon HH, Weickmann KM (2001) Intraseasonal air-sea interactions at the onset of El Niño. J Climate 14:1702–1719

    Article  Google Scholar 

  • Clark NE, Eber L, Laurs RM, Renner JA, Saur JFT (1974) Heat exchange between ocean and atmosphere in the eastern North Pacific for 1961–1971. NOAA Tech. Rep. NMRS SSRF-682, p 108

  • de Boyer Montégut C, Madec G, Fischer AS, Lazar A, Iudicone D (2004) Mixed layer depth over the global ocean: an examination of profile data and a profile-based climatology. J Geophys Res 109:C12003. doi:10.1029/2004JC002378

    Article  Google Scholar 

  • Donguy JR, Meyers G (1996) Seasonal variations of sea-surface salinity and temperature in the tropical Indian Ocean. Deep Sea Res (I) 43:117–138

    Article  Google Scholar 

  • Drushka K, Sprintall J, Gille ST, Wijffels S (2012) In situ observations of Madden–Julian Oscillation mixed layer dynamics in the Indian and Western Pacific Oceans. J Clim 25:2306–2328

    Article  Google Scholar 

  • Drushka K, Sprintall J, Gille ST (2014) Subseasonal variations in salinity and barrier-layer thickness in the eastern equatorial Indian Ocean. J Geophys Res Oceans 119:805–823. doi:10.1002/2013JC009422

    Article  Google Scholar 

  • Duchon CE (1979) Lanczos filtering in one and two dimensions. J Appl Meteorol 18(8):1016–1022

    Article  Google Scholar 

  • Grunseich G, Subrahmanyam B, Arguez A (2011) Influence of the Madden–Julian Oscillation on sea surface salinity in the Indian Ocean. Geophys Res Lett 38:L17605. doi:10.1029/2011GL049047

    Article  Google Scholar 

  • Grunseich G, Subrahmanyam B, Wang B (2013) The Madden–Julian oscillation detected in Aquarius salinity observations. Geophys Res Lett 40:5461–5466. doi:10.1002/2013GL058173

    Article  Google Scholar 

  • Guan B, Lee T, Halkides DJ, Waliser DE (2014) Aquarius surface salinity and the Madden-Julian Oscillation: the role of salinity in surface layer density and potential energy. Geophys Res Lett 41:2858–2869. doi:10.1002/2014GL059704

    Article  Google Scholar 

  • Han W, Yuan D, Liu WT, Halkides DJ (2007) Intraseasonal variability of Indian Ocean sea surface temperature during boreal winter: Madden-Julian Oscillation versus submonthly forcing and processes. J Geophys Res 112:C04001. doi:10.1029/2006JC003791

    Google Scholar 

  • Hase H, Masumoto Y, Kuroda Y, Mizuno K (2008) Semiannual variability in temperature and salinity observed by Triangle Trans-Ocean Buoy Network (TRITON) buoys in the eastern tropical Indian Ocean. J Geophys Res 113:C01016. doi:10.1029/2006JC004026

    Google Scholar 

  • Horii T, Ueki I, Ando K, Mizuno K (2013) Eastern Indian Ocean warming associated with the negative Indian Ocean dipole: a case study of the 2010 event. J Geophys Res Oceans 118:536–549. doi:10.1002/jgrc.20071

    Article  Google Scholar 

  • Hosoda S, Ohira T, Nakamura T (2008) A monthly mean dataset of global oceanic temperature and salinity derived from Argo float observations. JAMSTEC Rep Res Dev 8:47–59

    Article  Google Scholar 

  • Huffman GJ, Bolvin DT, Nelkin EJ, Wolff DB, Adler RF, Gu G, Hong Y, Bowman KP, Stocker EF (2007) The TRMM multi-satellite precipitation analysis: quasi-global, multi-year, combined-sensor precipitation estimates at fine scale. J Hydrometeorol 8(1):38–55. doi:10.1175/JHM560.1

    Article  Google Scholar 

  • Iskandar I, Masumoto Y, Mizuno K (2009) Subsurface equatorial zonal current in the eastern Indian Ocean. J Geophys Res 114:C06005. doi:10.1029/2008JC005188

    Google Scholar 

  • Jensen TG (2001) Arabian Sea and Bay of Bengal exchange of salt and tracers in an ocean model. Geophys Res Lett 28:3967–3970

    Article  Google Scholar 

  • Kalnay E et al (1996) The NCEP/NCAR 40-year reanalysis project. Bull Ame Meteor Soc 77:437–471

    Article  Google Scholar 

  • Kuroda Y (2002) TRITON: present status and future plan. TOCS Rep 5 p 77 JAMSTEC Kanagawa Japan.

  • Li Y, Han W, Lee T (2015) Intraseasonal sea surface salinity variability in the equatorial Indo-Pacific Ocean induced by Madden-Julian oscillations. J Geophys Res. doi:10.1002/2014JC010647

    Google Scholar 

  • Liebmann B, Smith CA (1996) Description of a complete (interpolated) outgoing longwave radiation dataset. Bull Am Meteor Soc 77:1275–1277

    Google Scholar 

  • Lukas R, Lindstrom E (1991) The mixed layer of the western equatorial Pacific Ocean. J Geophys Res 96:3343–3357

    Article  Google Scholar 

  • Madden RA, Julian PR (1972) Description of global scale circulation cell in the tropics with a 40–50 day period. J Atmos Sci 29:1109–1123

    Article  Google Scholar 

  • Madden RA, Julian PR (1994) Observations of the 40–50 day tropical oscillation: a review. Mon Weather Rev 122:814–837

    Article  Google Scholar 

  • Maloney E, Sobel A (2004) Surface fluxes and ocean coupling in the tropical intraseasonal oscillation. J Climate 17:3717–3720

    Google Scholar 

  • Masson SP, Delecluse P, Boulanger JP, Menkes C (2002) A model study of the seasonal variability and formation mechanisms of the barrier layer in the eastern equatorial Indian Ocean. J Geophys Res 107(C12):8017. doi:10.1029/2001JC000832

    Google Scholar 

  • Masumoto Y, Hase H, Kuroda Y, Matsuura H (2005) Current variability in the Indian Ocean. Geophys Res Lett 32:L02607. doi:10.1029/2004GL021896

    Article  Google Scholar 

  • Matthews A, Singhruck P, Heywood K (2010) Ocean temperature and salinity components of the Madden-Julian oscillation observed by Argo floats. Clim Dyn 35(7–8):1149–1168. doi:10.1007/s00382-009-0631-7

    Article  Google Scholar 

  • McPhaden MJ, Foltz G (2013) Intraseasonal variations in the surface layer heat balance of the central equatorial Indian Ocean: the importance of zonal advection and vertical mixing. Geophys Res Lett 40:2737–2741. doi:10.1002/grl.50536

    Article  Google Scholar 

  • McPhaden MJ, Meyers G, Ando K, Masumoto Y, Murty VSN, Ravichandran M, Syamsudin F, Vialard J, Yu L, Yu W (2009) RAMA: the research moored array for African-Asian-Australian monsoon analysis and prediction. Bull Amer Meteorol Soc 90(4):459–480

    Article  Google Scholar 

  • Nagura M, McPhaden MJ (2012) The dynamics of wind-driven intraseasonal variability in the equatorial Indian Ocean. J Geophys Res 117:C02001. doi:10.1029/2011JC007405

    Google Scholar 

  • Paulson CA, Simpson JJ (1977) Irradiance measurements in the upper ocean. J Phys Oceanogr 7:952–956

    Article  Google Scholar 

  • Praveen Kumar B, Vialard J, Lengaigne M, Murty V, McPhaden MJ (2012) Tropflux: air-sea fluxes for the global tropical oceans–description and evaluation. Clim Dyn 38:1521–1543. doi:10.1007/s00382-012-1455-4

    Article  Google Scholar 

  • Qiu YW, Cai W, Li L, Guo X (2012) Argo profiles variability of barrier layer in the tropical Indian Ocean and its relationship with the Indian Ocean Dipole. Geophys Res Lett 39:L08605. doi:10.1029/2012GL051441

    Article  Google Scholar 

  • Rao RR, Sivakumar R (2003) Seasonal variability of sea surface salinity and salt budget of the mixed layer of the north Indian Ocean. J Geophys Res. doi:10.1029/2001JC000907

    Google Scholar 

  • Rao SA, Yamagata T (2004) Abrupt termination of Indian Ocean dipole events in response to intraseasonal disturbances. Geophys Res Lett 31:L19306. doi:10.1029/2004GL020842

    Article  Google Scholar 

  • Reynolds RW, Smith TM, Liu C, Chelton DB, Casey KS, Schlax MG (2007) Daily high-resolution-blended analyses for sea surface temperature. J Clim 20:5473–5496

    Article  Google Scholar 

  • Salby ML, Hendon HH (1994) Intraseasonal behavior of clouds, temperature, and motion in the tropics. J Atmos Sci 51:2207–2224

    Article  Google Scholar 

  • Schiller A, Godfrey J (2003) Indian Ocean intraseasonal variability in an ocean general circulation model. J Clim 16:21–39

    Article  Google Scholar 

  • Schott FA, Xie S-P, McCreary JP Jr (2009) Indian Ocean circulation and climate variability. Rev Geophys 47:RG1002. doi:10.1029/2007RG000245

    Google Scholar 

  • Shinoda T, Hendon HH (1998) Mixed layer modeling of intraseasonal variability in the tropical western Pacific and Indian Oceans. J Clim 11:2668–2685

    Article  Google Scholar 

  • Sprintall J, Tomczak M (1992) Evidence of the barrier layer in the surface layer of the tropics. J Geophys Res 97(C5):7305–7316

    Article  Google Scholar 

  • Takayabu YN, Iguchi T, Kachi M, Shibata A, Kanzawa H (1999) An impact of a Madden-Julian oscillation on the abrupt termination of the 1997–98 El Niño. Nature 402:279–282

    Article  Google Scholar 

  • Vialard J, Foltz G, McPhaden MJ, Duvel JP, de Boyer Montégut C (2008) Strong Indian Ocean sea surface temperature signals associated with the Madden-Julian Oscillation in late 2007 and early 2008. Geophys Res Lett 35:L19608. doi:10.1029/2008GL035238

    Article  Google Scholar 

  • Waliser DE, Lau K, Kim J (1999) The influence of coupled sea surface temperatures on the Madden-Julian oscillation: a model perturbation experiment. J Atmos Sci 56:333–358

    Article  Google Scholar 

  • Waliser DE, Murtugudde R, Lucas LE (2003) Indo-Pacific Ocean response to atmospheric intraseasonal variability. Part I: austral summer and the Madden–Julian oscillation. J Geophys Res 108:3160. doi:10.1029/2002JC001620

    Article  Google Scholar 

  • Wheeler M, Hendon H (2004) An all-season real-time multivariate MJO index: development of an index for monitoring and prediction. Mon Weather Rev 132:1917–1932

    Article  Google Scholar 

  • Woolnough SJ, Vitart F, Balmaseda M (2007) The role of the ocean in the Madden-Julian oscillation: implications for MJO prediction. Quart J Roy Meteor Soc 133:117–128

    Article  Google Scholar 

  • Wyrtki K (1973) An equatorial jet in the Indian Ocean. Science 181:262–264

    Article  Google Scholar 

  • Zhang YC, Rossow WB, Lacis AA, Oinas V, Mishchenko MI (2004) Calculation of radiative fluxes from the surface to top of atmosphere based on ISCCP and other global data sets: refinements of the radiative transfer model and the input data. J Geophys Res 109:D19105. doi:10.1029/2003JD004457

    Article  Google Scholar 

  • Zhang Y, Du Y, Zheng S, Yang Y, Cheng X (2013) Impact of Indian Ocean Dipole on the salinity budget in the equatorial Indian Ocean. J Geophys Res Oceans 118:4911–4923. doi:10.1002/jgrc.20392

    Article  Google Scholar 

Download references

Acknowledgments

We thank all of the members of the R/V Mirai and the data processing team of the Triangle Trans-Ocean Buoy Network (TRITON) buoy cruise operations for their data management. We also thank the US National Oceanic and Atmospheric Administration (NOAA)/Pacific Marine Environmental Laboratory (PMEL) and National Institute of Oceanography (NIO) for providing RAMA buoy data, and the NOAA-Cooperative Institute for Research in Environmental Sciences (CIRES) Earth System Research Laboratory (ESRL)/Physical Sciences Division (PSD) for providing SST data and reanalysis flux products. The TropFlux data were produced through a collaboration between Laboratoire d’Océanographie: Expérimentation et Approches Numériques (LOCEAN) from Institut Pierre Simon Laplace (IPSL, Paris, France) and the National Institute of Oceanography/CSIR (NIO, Goa, India), and it was supported by the Institut de Recherche pour le Développement (IRD, France). We thank two anonymous reviewers for valuable comments and suggestions.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to T. Horii.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Horii, T., Ueki, I., Ando, K. et al. Impact of intraseasonal salinity variations on sea surface temperature in the eastern equatorial Indian Ocean. J Oceanogr 72, 313–326 (2016). https://doi.org/10.1007/s10872-015-0337-x

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10872-015-0337-x

Keywords

Navigation