Skip to main content

Modeling low salinity waters along the coast around Japan using a high-resolution river discharge dataset

Abstract

The effect of river runoff on the salinity distribution in the coastal regions of Japan is investigated with a nested-grid model system. High-resolution river runoff data calculated by a hydrological cycle model are used in this study. Freshwater fluxes from rivers result in extremely low salinity waters along the coast of Japan. Fixed line observations conducted by prefectural fisheries research institutes show that such low salinity waters also exist in the real ocean. The use of the river runoff data noted above leads to reduction in root mean square errors (RMSEs) of sea surface salinity between observational data and the model result. The model experiments also show that freshwater inputs from large rivers can affect the salinity distribution far away from their mouths, which suggests that we should care about such rivers far away from the area of interest as well as local rivers. The experiment with runoff from non-Class-A rivers shows the smaller RMSE than the experiment without river runoff. Such small rivers also contribute a lot to improving reproducibility of the salinity distribution in the coastal areas. These results clearly show that precise data for river discharge are essential for realistic coastal modeling.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19
Fig. 20
Fig. 21

References

  1. Antonov JI, Seidov D, Boyer TP, Locarnini RA, Mishonov AV, Garcia HE, Baranova OK, Zweng MM, Johnson DR (2010) World Ocean Atlas 2009 volume 2: salinity. In: Levitus S (ed) NOAA Atlas NESDIS, vol 69. U.S. Gov. Printing Office, Washington, D.C., p 184

  2. Avicola G, Huq P (2003a) The characteristics of the recirculating bulge region in coastal buoyant outflows. J Mar Res 61(4):435–463

    Article  Google Scholar 

  3. Avicola G, Huq P (2003b) The role of outflow geometry in the formation of the recirculating bulge region in coastal buoyant outflows. J Mar Res 61(4):411–434

    Article  Google Scholar 

  4. Chérubin LM (2014) High-resolution simulation of the circulation in the Bahamas and Turks and Caicos Archipelagos. Progr Oceanogr 127:21–46

    Article  Google Scholar 

  5. Danabasoglu G, Yeager SG, Bailey D, Behrens E, Bentsen M, Bi D, Biastoch A, Böning C, Bozec A, Canuto VM, Cassou C, Chassignet E, Coward AC, Danilov S, Diansky N, Drange H, Farneti R, Fernandez E, Fogli PG, Forget G, Fujii Y, Griffies SM, Gusev A, Heimbach P, Howard A, Jung T, Kelley M, Large WG, Leboissetier A, Lu J, Madec G, Marsland SJ, Masina S, Navarra A, Nurser AG, Pirani A, y Mélia DS, Samuels BL, Scheinert M, Sidorenko D, Treguier AM, Tsujino H, Uotila P, Valcke S, Voldoire A, Wang Q (2014) North Atlantic simulations in coordinated ocean-ice reference experiments phase II (CORE-II). Part I: Mean states. Ocean Model 73:76–107

  6. Fong DA, Geyer WR (2002) The alongshore transport of freshwater in a surface-trapped river plume. J Phys Oceanogr 32:957–972

    Article  Google Scholar 

  7. Garvine RW (2001) The impact of model configuration in studies of buoyant coastal discharge. J Mar Res 59:193–225

    Article  Google Scholar 

  8. Griffies SM, Hallberg RW (2000) Biharmonic friction with a Smagorinsky-like viscosity for use in large-scale eddy-permitting ocean models. Mon Weather Rev 128:2935–2946

    Article  Google Scholar 

  9. Griffies SM, Yin J, Durack PJ, Goddard P, Bates SC, Behrens E, Bentsen M, Bi D, Biastoch A, Böning CW, Bozec A, Chassignet E, Danabasoglu G, Danilov S, Domingues CM, Drange H, Farneti R, Fernandez E, Greatbatch RJ, Holland DM, Ilicak M, Large WG, Lorbacher K, Lu J, Marsland SJ, Mishra A, Nurser AG, y Mélia DS, Palter JB, Samuels BL, Schröter J, Schwarzkopf FU, Sidorenko D, Treguier AM, heng Tseng Y, Tsujino H, Uotila P, Valcke S, Voldoire A, Wang Q, Winton M, Zhang X, (2014) An assessment of global and regional sea level for years 1993–2007 in a suite in interannual CORE-II simulations. Ocean Model 78:35–89

  10. Hasumi H (2006) CCSR Ocean Component Model (COCO) version 4.0. CCSR report 25, Center for Climate System Research, University of Tokyo

  11. Hickey BM, Pietrafesa LJ, Jay DA, Boicourt WC (1998) The Columbia River plume study: subtidal variability in the velocity and salinity fields. J Geophys Res 103(C5):10339–10368

    Article  Google Scholar 

  12. Ishizaki H, Motoi T (1999) Reevaluation of the Takano–Oonishi scheme for momentum advection on bottom relief in ocean models. J Atmos Ocean Technol 16(12):1994–2010

    Article  Google Scholar 

  13. Komuro Y, Suzuki T, Sakamoto TT, Hasumi H, Ishii M, Watanabe M, Nozawa T, Yokohata T, Nishimura T, Ogochi K, Emori S, Kimoto M (2012) Sea-ice in twentieth-century simulations by new MIROC coupled models: a comparison between models with high resolution and with ice thickness distribution. J Meteorol Soc Jpn 90A:213–232. doi:10.2151/jmsj.2012-A11

    Article  Google Scholar 

  14. Kurapov AL, Foley D, Strub PT, Egbert GD, Allen JS (2011) Variational assimilation of satellite observations in a coastal ocean model off Oregon. J Geophys Res 116(C05):006

    Google Scholar 

  15. Kurogi M, Hasumi H, Tanaka Y (2013) Effects of stretching on maintaining the Kuroshio meander. J Geophys Res 118:1182–1194. doi:10.1002/jgrc.20123

    Article  Google Scholar 

  16. Large WG, Yeager SG (2004) Diurnal to decadal global forcing for ocean and sea-ice models: the data sets and flux climatologies. Technical report TN-460+STR, NCAR

  17. Large WG, Yeager SG (2009) The global climatology of an interannually varing air-sea flux data set. Clim Dyn 33(2–3):341–364

    Article  Google Scholar 

  18. Leonard B (1979) A stable and accurate convective modelling procedure based on quadratic upstream interpolation. Comput Method Appl Mech Eng 19(1):59–98

    Article  Google Scholar 

  19. Leonard B, MacVean M, Lock A (1994) The flux-integral method for multidimensional convection and diffusion. Technical Memorandum 106679, NASA

  20. Locarnini RA, Mishonov AV, Antonov JI, boyer TP, Garcia HE, Baranova OK, Zweng MM, Johnson DR (2010) World Ocean Atlas 2009 volume 1: temperature. In: Levitus S (ed) NOAA Atlas NESDIS, vol 68. U.S. Gov. Printing Office, Washington, D.C., p 184

  21. Miyazawa Y, Miyama T, Varlamov SM, Guo X, Waseda T (2012) Open and coastal seas interactions south of Japan represented by an ensemble Kalman filter. Ocean Dyna 62:645–659

    Article  Google Scholar 

  22. Miyazawa Y, Masumoto Y, Varlamov SM, Miyama T, Takigawa M, Honda M, Saino T (2013) Inverse estimation of source parameters of oceanic radioactivity dispersion models associated with the Fukushima accident. Biogeosciences 10:2349–2363

    Article  Google Scholar 

  23. Naganuma K (2000) The Sea of Japan as the natural environment of marine organisms. Bull Jpn Sea Natl Fish Res Inst 50:1–42

    Google Scholar 

  24. Nakada S, Ishikawa Y, Awaji T, In T, Shima S, Nakayama T, Isada T, Saitoh SI (2012) Modeling runoff into a region of freshwater influence for improved ocean prediction: application to Funka Bay. Hydrol Res Lett 6:47–52

    Article  Google Scholar 

  25. Nishida Y, Kanomata I, Tanaka I, Sato S, Takahashi S, Matsubara H (2003) Seasonal and interannual variations of the volume transport through the Tsugaru Strait. Oceanogr Jpn 12(5):487–499

    Article  Google Scholar 

  26. Noh Y, Kim HJ (1999) Simulations of temperature and turbulence structure of the oceanic boundary layer with the improved near-surface process. J Geophys Res 104(C7):15621–15634

    Article  Google Scholar 

  27. Oki T, Nishimura T, Dirmeyer P (1999) Assessment of annual runoff from land surface models using total runoff integrating pathways (TRIP). J Meteorol Soc Jpn 77(1B):235–255

    Google Scholar 

  28. River Bureau, Ministry of Land, Infrastructure, Transport and Tourism (2007) River Administration in Japan. http://www.mlit.go.jp/river/basic_info/english/pdf/RiverAdministrationInJapan(e).pdf

  29. Roach AT, Aagaard K, Pease CH, Salo SA, Weingartner T, Pavlov V, Kulakov M (1995) Direct measurements of transport and water properties through the Bering Strait. J Geophys Res 100(C9):18443–18457

    Article  Google Scholar 

  30. Takikawa T, Yoon JH, Cho KD (2005) The Tsushima warm current through Tsushima straits estimated from Ferryboat ADCP data. J Phys Oceanogr 35:1154–1168

    Article  Google Scholar 

  31. Taniguchi M (2000) A critical review of global studies on groundwater—scale-up of groundwater studies in time and space. J Jpn Soc Hydrol Water Resour 13(6):476–485

    Article  Google Scholar 

  32. Taniguchi M, Burnett WC, Cable JE, Turner JV (2002) Investigation of submarine groundwater discharge. Hydrol Process 16(11):2115–2129

    Article  Google Scholar 

  33. Tanioka K (1962) The oceanographical conditions of Japan-Sea (1)—on the annual variations of chlorinity. Umi to Sora 38(3):90–100

    Google Scholar 

  34. Tsujino H, Hirabara M, Nakano H, Yasuda T, Motoi T, Yamanaka G (2011) Simulating present climate of the global ocean-ice system using the Meteorological Research Institute Community Ocean Model (MRI.COM): simulation characteristics and variability in the Pacific sector. J Oceanogr 67:449–479

    Article  Google Scholar 

  35. Uda M (1934) Hydrographical research on the normal monthly conditions in the Japan Sea, the Yellow Sea, and the Okohotsk Sea. J Imp Fish Exp Stn 5:191–236

    Google Scholar 

  36. Whitney MM, Garvine RW (2005) Wind influence on a coastal buoyant outflow. J Geophys Res 110(C03014). doi:10.1029/2003JC002261

  37. Whitney MM, Garvine RW (2006) Simulating the Delaware Bay buoyant outflow: comparison with observations. J Phys Oceanogr 36:3–21

    Article  Google Scholar 

  38. Woodgate RA, Aagaard K, Weingartner TJ (2005) Monthly temperature, salinity, and transport variability of the Bering Strait through flow. Geophys Res Lett 32(L04):601. doi:10.1029/2004GL021880

    Google Scholar 

  39. Yankovsky AE, Chapman DC (1997) A simple theory for the fater of buoyant coastal discharges. J Phys Oceanogr 27:1386–1401

    Article  Google Scholar 

  40. Yokouchi K, Kaga Y, Ueda K, Matsumoto I, Ogishima T, Yamada H (1998) Observations and simulation of annual Plankton cycles off the Sanriku Coast and in Sendai Bay (in Japanese). Bull Tohoku Natl Fish Res Inst 60:1–14

    Google Scholar 

  41. Yoshimura K, Miyazaki S, Kanae S, Oki T (2006) Iso-MATSIRO, a land surface model that incorporates stable water isotopes. Glob Planet Change 51:90–107

    Article  Google Scholar 

  42. Yoshimura K, Sakimura T, Oki T, Kanae S, Seto S (2008) Toward flood risk prediction: a statistical approach using a 29-year river discharge simulation over Japan. Hydrol Res Lett 2:22–26

    Article  Google Scholar 

Download references

Acknowledgments

The authors appreciate thoughtful and constructive comments from two anonymous reviewers, which significantly improve the quality of this paper. This study is supported by Tohoku Ecosystem-Associated Marine Sciences from Ministry of Education, Culture, Sports, Science, and Technology of Japan. The numerical experiments are conducted using the Fujitsu PRIMEHPC FX10 System (Oakleaf-FX, Oakbridge) in the Information Technology Center, the University of Tokyo. Authors would like to express heartfelt respects and gratitude to all public research institutes, including two institutes and one center cited in the text, which manage fixed line observation in the coastal regions of Japan.

Author information

Affiliations

Authors

Corresponding author

Correspondence to L. Shogo Urakawa.

Electronic supplementary material

Below is the link to the electronic supplementary material.

ESM1 (mpg 30946 kb)

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Urakawa, L.S., Kurogi, M., Yoshimura, K. et al. Modeling low salinity waters along the coast around Japan using a high-resolution river discharge dataset. J Oceanogr 71, 715–739 (2015). https://doi.org/10.1007/s10872-015-0314-4

Download citation

Keywords

  • River runoff
  • low salinity waters
  • coastal modeling
  • two-way nested-grid model system
  • ocean general circulation model