Skip to main content

Insight into nitrous oxide production processes in the western North Pacific based on a marine ecosystem isotopomer model

Abstract

A marine ecosystem model that incorporates nitrous oxide (N2O) production processes (i.e., ammonium oxidation during nitrification and nitrite reduction during nitrifier denitrification) and N isotopomers was developed to estimate the sea–air N2O flux and to quantify N2O production processes. This model was applied to water above the depth of 220 m at two contrasting time series sites, a subarctic station (K2) and a subtropical station (S1) in the western North Pacific. The model was validated with observed N concentration and N isotopomer data sets, and successfully simulated the higher N2O concentrations, higher δ15N values, and higher site preference values for N2O at K2 compared with S1. The annual mean N2O emissions were estimated to be 32.3 mg N m−2 year−1 at K2 and 2.7 mg N m−2 year−1 at S1. The results of case studies based on this model estimated the ratios of in situ biological N2O production to nitrate production during nitrification to be ~0.22 % at K2 and ~0.06 % at S1. It is also suggested that N2O was mainly produced via ammonium oxidation at K2, but was produced via both ammonium oxidation and nitrite reduction at S1. A large fraction (~80 %) of the ammonium oxidation at K2 was carried out by archaea in the subsurface water. Isotope tracer incubation experiments using an archaeal activity inhibitor supported this hypothesis.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

References

  1. Bange HW, Rapsomanikis S, Andreae MO (1996) Nitrous oxide in coastal waters. Global Biogeochem Cycles 10:197–207

    Article  Google Scholar 

  2. Beman JM, Chow CE, King AL, Feng Y, Fuhrman JA, Andersson A, Bates NR, Popp BN, Hutchins DA (2011) Global declines in oceanic nitrification rates as a consequence of ocean acidification. Proc Natl Acad Sci 108:209–213

    Article  Google Scholar 

  3. Casciotti KL, Sigman DM, Ward BB (2003) Linking diversity and stable isotope fractionation in ammoniumoxidizing bacteria. Geomicrobiol J 20:335–353

    Article  Google Scholar 

  4. Casciotti K, Buchwald C, Santoro AE, Frame C (2011) Assessment of nitrogen and oxygen isotopic fractionation during nitrification and itsexpression in the marine environment. Methods Enzymol 486:253–280. doi:10.1016/B978-0-12-381294-0.00011-0

    Article  Google Scholar 

  5. Codispoti LA (2010) Interesting times for marine N2O. Science 327:1339–1340. doi:10.1126/science.1184945

    Article  Google Scholar 

  6. Frame CH, Casciotti KL (2010) Biogeochemical controls and isotopic signatures of nitrous oxide production by a marine ammonia-oxidizing bacterium. Biogeosciences 7:2695–2709. doi:10.5194/bgd-7-3019-2010

    Article  Google Scholar 

  7. Fujiki T, Matsumoto K, Mino Y, Sasaoka K, Wakita M, Kawakami H, Honda MC, Watanabe S, Saino T (2014) The seasonal cycle of phytoplankton community structure and photo-physiological state in the western subarctic gyre of the North Pacific. Limnol Oceanogr 59(3):887–900

    Article  Google Scholar 

  8. Granger J, Sigman DM (2009) Removal of nitrite with sulfamic acid for nitrate N and O isotope analysis with the denitrifier method. Rapid Commun Mass Spectrom 23(23):3753–3762

    Article  Google Scholar 

  9. Granger J, Sigman DM, Rohde MM, Maldonado MT, Tortell PD (2010) N and O isotope effects during nitrate assimilation by unicellular prokaryotic and eukaryotic plankton cultures. Geochim Cosmochim Acta 74(3):1030–1040

    Article  Google Scholar 

  10. Horrigan SG, Montoya JP, Nevins JL, McCarthy JJ (1990) Natural isotopic composition of dissolved inorganic nitrogen in the Chesapeake Bay. Estuar Coast Shelf Sci 30:393–410

    Article  Google Scholar 

  11. Inoue HY, Mook WG (1994) Equilibrium and kinetic nitrogen and oxygen isotope fractionations between dissolved and gaseous N2O. Chem Geol 113:135–148

    Article  Google Scholar 

  12. IPCC Working group I (2013) Climate change 2013: the physical science basis. http://www.ipcc.ch/report/ar5/wg1/. Accessed 24 April 2014

  13. Jin X, Gruber N (2003) Offsetting the radiative benefit of ocean iron fertilization by enhancing N2O emissions. Geophys Res Lett 30(24):2249. doi:10.1029/2003GL018458

    Article  Google Scholar 

  14. Kalnay E, Kanamitsu M, Kistler R, Collins W, Deaven D, Gandin L, Iredell M, Saha S, White G, Woollen J, Zhu Y, Leetmaa A, Reynolds R, Chelliah M, Ebisuzaki W, Higgins W, Janowiak J, Mo KC, Ropelewski C, Wang J, Jenne R, Joseph D (1996) The NCEP/NCAR 40-year reanalysis project. Bull Am Meteorol Soc 77:437–471

    Article  Google Scholar 

  15. Konneke M, Bernhard AE, de la Torre JR, Walker CB, Waterbury JB, Stahl DA (2005) Isolation of an autotrophic ammonia-oxidizing marine archaeon. Nature 437:543–546

    Article  Google Scholar 

  16. Kouketsu S, Kaneko H, Okunishi T, Sasaoka K, Itoh S, Inoue R, Ueno H (2015) Mesoscale eddy effects on temporal variability of surface chlorophyll a in the Kuroshio Extension. J Oceanogr. doi:10.1007/s10872-015-0286-4

    Google Scholar 

  17. Locarnini RA, Mishonov AV, Antonov JI, Boyer TP, Garcia HE, Baranova OK, Zweng MM, Johnson DR (2010) World ocean atlas 2009, vol 1: temperature. In: Levitus S (ed) NOAA atlas NESDIS 68, US Government Printing Office, Washington, DC

  18. Löscher CR, Kock A, Könneke M, LaRoche J, Bange HW, Schmitz RA (2012) Production of oceanic nitrous oxide by ammonia-oxidizing archaea. Biogeosciences 9:2419–2429. doi:10.5194/bg-9-2419-2012

    Article  Google Scholar 

  19. Mandernack KW, Mills CT, Johnson CA, Rahn T, Kinney C (2009) The δ15N and δ18O values of N2O produced during the co-oxidation of ammonia by methanotrophic bacteria. Chem Geol 267(1–2):96–107. doi:10.1016/j.chemgeo.2009.06.008

    Article  Google Scholar 

  20. Miyake Y, Wada E (1971) The isotope effect on the nitrogen in biochemical oxidation-reduction reactions. Rec Oceanogr Works Jpn 11:1–6

    Google Scholar 

  21. Nevison CD, Weiss RF, Erickson DJ (1995) Global oceanic emissions of nitrous oxide. J Geophys Res 100:15809–15820

    Article  Google Scholar 

  22. Ogawa NO, Nagata T, Kitazato H, Ohkouchi N (2010) Ultra-sensitive elemental analyzer/isotope ratio mass spectrometer for stable nitrogen and carbon isotope analyses. In: Ohkouchi N, Tayasu I, Koba K (eds) Earth, life, and isotopes. Kyoto University Press, Kyoto, pp 339–353

    Google Scholar 

  23. Ohkouchi N, Kashiyama Y, Kuroda J, Ogawa NO, Kitazato H (2006) The importance of diazotrophic cyanobacteria as primary producers during Cretaceous Oceanic Anoxic Event 2. Biogeoscience 3:575–605

    Article  Google Scholar 

  24. Olivier JGJ, Bouwman AF, Van der Maas CWM, Berdowski JJM, Veldt C, Bloos JPJ, Visschedijk AJH, Zandveld PYJ, Haverlag JL (1996) Description of EDGAR Version 2.0: a set of global emission inventories of greenhouse gases and ozone-depleting substances for all anthropogenic and most natural sources on a per country basis and on 1° × 1° grid. National Institute of Public Health and the Environment (RIVM) report no. 771060 002/TNO-MEP report no. R96/119

  25. Ostrom NE, Pitt A, Sutka R, Ostrom PH, Grandy AS, Huizinga KM, Robertson GP (2007) Isotopologue effects during N2O reduction in soils and in pure cultures of denitrifiers. J Geophys Res. doi:10.1029/2006JGR000287

    Google Scholar 

  26. Popp BN, Westley MB, Toyoda S, Miwa T, Dore JE, Yoshida N, Rust TM, Sansone FJ, Russ ME, Ostrom NE, Ostrom PH (2002) Nitrogen and oxygen isotopomeric constraints on the origins and sea-to-air flux of N2O in the oligotrophic subtropical North Pacific gyre. Global Biogeochem Cycles 16(4):1064

    Article  Google Scholar 

  27. Rickels W, Rehdanz K, Oschlies A (2010) Methods for greenhouse gas offsets accounting: a case study of ocean iron fertilization. Ecol Econ 69:2495–2509

    Article  Google Scholar 

  28. Santoro AE, Casciotti KL, Francis CA (2010) Activity abundance and diversity of nitrifying archaea and bacteria in the central California Current. Environ Microbiol 12:1989–2006. doi:10.1111/j.1462-2920.2010.02205.x

    Article  Google Scholar 

  29. Santoro AE, Buchwald C, McIlvin MR, Casciotti KL (2011) Isotopic signature of N2O produced by marine ammonia-oxidizing archaea. Science 333:1282–1285. doi:10.1126/science.1208239

    Article  Google Scholar 

  30. Schmittner A, Galbraith ED (2008) Glacial greenhouse gas fluctuations controlled by ocean circulation changes. Nature 456:373–376. doi:10.1038/nature07531

    Article  Google Scholar 

  31. Shaw LJ, Nicol GW, Smith Z, Fear J, Prosser JI, Baggs EM (2006) Nitrosospira spp. can produce nitrous oxide via a nitrifier denitrification pathway. Environ Microbiol 8:214–222

    Article  Google Scholar 

  32. Shiozaki T, Furuya K, Kodama T, Kitajima S, Takeda S, Takemura T, Kanda J (2010) New estimation of N2 fixation in the western and central Pacific Ocean and its marginal seas. Global Biogeochem Cycles 24:GB1015. doi:10.1029/2009GB003620

  33. Sigman DM, Casciotti KL, Andreani M, Barford C, Galanter M, Böhlke JK (2001) A bacterial method for the nitrogen isotopic analysis of nitrate in seawater and freshwater. Anal Chem 73:4145–4153

    Article  Google Scholar 

  34. Spott O, Russow R, Stange CF (2011) Formation of hybrid N2O and hybrid N2 due to codenitrification: first review of a barely considered process of microbially mediated N-nitrosation. Soil Biol Biochem 43:1995–2011

    Article  Google Scholar 

  35. Stanley RHR, Jenkins WJ, Lott DE III, Doney SC (2009) Noble gas constraints on air-sea gas exchange and bubble fluxes. J Geophys Res 114:C11020. doi:10.1029/2009JC00539696

    Article  Google Scholar 

  36. Stieglmeier M, Mooshammer M, Kitzler B, Wanek W, Zechmeister-Boltenstern S, Richter A, Schleper C (2014) Aerobic nitrous oxide production through N-nitrosating hybrid formation in ammonia oxidizing archaea. ISME J 8:1135–1146

    Article  Google Scholar 

  37. Suga T, Hanawa K, Toba Y (1989) Subtropical mode water in the 137 E section. J Phys Oceanogr 19:1605–1618

    Article  Google Scholar 

  38. Suntharalingam P, Sarmiento JL (2000) Factors governing the oceanic nitrous oxide distribution: simulations with an ocean general circulation model. Global Biogeochem Cycles 14(1):429–454. doi:10.1029/1999GB900032

    Article  Google Scholar 

  39. Sutka RL, Ostrom NE, Ostrom PH, Breznak JA, Pitt AJ, Li F, Gandhi H (2006) Distinguishing nitrous oxide production from nitrification and denitrification on the basis of isotopomer abundances. Appl Environ Microbiol. doi:10.1128/AEM.72.1.638-644

    Google Scholar 

  40. Toyoda S, Yoshida N (1999) Determination of nitrogen isotopomers of nitrous oxide on a modified isotope ratio mass spectrometer. Anal Chem 71:4711–4718. doi:10.1021/ac9904563

    Article  Google Scholar 

  41. Toyoda S, Yoshida N, Miwa T, Matsui Y, Yamagishi H, Tsunogai U (2002) Production mechanism and global budget of N2O inferred from its isotopomers in the western North Pacific. Res. Lett, Geophys. doi:10.1029/2001GL014311

    Google Scholar 

  42. Toyoda S, Mutobe H, Yamagishi H, Yoshida N, Tanji Y (2005) Fractionation of N2O isotopomers during production by denitrifier. Soil Biol Biochem 37:1535–1545. doi:10.1016/j.soilbio.2005.01.009

    Article  Google Scholar 

  43. Tyler J, Kashiyama Y, Ohkouchi N, Ogawa NO, Yokoyama Y, Chikaraishi Y, Staff RA, Ikehara M, Bronk Ramsey C, Bryant C, Brock F, Gotanda K, Haraguchi T, Yonenobu H, Nakagawa T (2010) Tracking aquatic change using chlorin-specific carbon and nitrogen isotopes: the last glacial-interglacial transition at Lake Suigetsu, Japan. Geochem Geophys Geosyst 11(9):Q09010. doi:10.1029/2010GC003186

    Article  Google Scholar 

  44. Wakita M, Watanabe S, Murata A, Tsurushima N, Honda MC (2010) Decadal change of dissolved inorganic carbon in the subarctic western North Pacific Ocean. Tellus B 62:608–620. doi:10.1111/j.1600-0889.2010.00476.x

    Article  Google Scholar 

  45. Wanninkhof R (1992) Relationship between wind speed and gas exchange over the ocean. J Geophys Res 97(C5):7373–7382. doi:10.1029/92JC00188

    Article  Google Scholar 

  46. Weiss RF, Price BA (1980) Nitrous oxide solubility in water and seawater. Mar Chem 8:347–359

    Article  Google Scholar 

  47. Yamagishi H, Westley MB, Popp BN, Toyoda S, Yoshida N, Watanabe S, Koba K, Yamanaka Y (2007) Role of nitrification and denitrification on the nitrous oxide cycle in the eastern tropical North Pacific and Gulf of California. J Geophys Res Biogeosci 112:G02015. doi:10.1029/2006JG000227

    Article  Google Scholar 

  48. Yamazaki T, Hozuki T, Arai K, Toyoda S, Koba K, Fujiwara T, Yoshida N (2014) Isotopomeric characterization of nitrous oxide produced by reaction of enzymes extracted from nitrifying and denitrifying bacteria. Biogeosciences 11:2679–2689. doi:10.5194/bg-11-2679-2014

    Article  Google Scholar 

  49. Yokokawa T, Sintes E, De Corte D, Olbrich K, Herndl GJ (2012) Differentiating leucine incorporation of archaea and bacteria throughout the water column of the eastern Atlantic using metabolic inhibitors. Aquat Microb Ecol 66:247–256

    Article  Google Scholar 

  50. Yoshida N (1988) 15N depleted N2O as a product of nitrification. Nature 335:528–529

    Article  Google Scholar 

  51. Yoshikawa C, Yamanaka Y, Nakatsuka T (2005) An ecosystem model including nitrogen isotopes: perspectives on a study of the marine nitrogen cycle. J Oceanogr 61:921–942

    Article  Google Scholar 

  52. Zamora LM, Oschlies A (2014) Surface nitrification: a major uncertainty in marine N2O emissions. Geophys Res Lett 41:4247–4253. doi:10.1002/2014GL060556

    Article  Google Scholar 

Download references

Acknowledgments

We thank the late Dr. T. Saino (Principal Investigator of the K2S1 Project) and the scientists, technicians, and crew of the R/V Mirai, JAMSTEC, for seawater sampling and providing the hydrographic and nutrient data at K2 and S1. We also thank two anonymous reviewers for their constructive comments. This work was supported by the Japan Society for the Promotion of Science (JSPS) KAKENHI Grants 24740365, 25281013, and 23224013, and the Swiss National Science Foundation Grant PBNEP2-142954. Figures 4, 5, 6, and 7 were drawn using the GFD Dennou Club Library.

Author information

Affiliations

Authors

Corresponding author

Correspondence to Chisato Yoshikawa.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Yoshikawa, C., Abe, H., Aita, M.N. et al. Insight into nitrous oxide production processes in the western North Pacific based on a marine ecosystem isotopomer model. J Oceanogr 72, 491–508 (2016). https://doi.org/10.1007/s10872-015-0308-2

Download citation

Keywords

  • N2O
  • Isotopomer
  • Marine ecosystem model
  • Western North Pacific