Skip to main content
Log in

Light utilization efficiency of phytoplankton in the Western Subarctic Gyre of the North Pacific during summer

  • Original Article
  • Published:
Journal of Oceanography Aims and scope Submit manuscript

Abstract

We investigated the water-column light utilization efficiency (Ψ) of phytoplankton photosynthesis in the Western Subarctic Gyre (WSG) of the North Pacific during summer 2008. The Ψ values (0.64–1.86 g C [g Chl a]−1 [mol photon]−1 m2) obtained were observed to increase significantly with decreasing daily photosynthetic available radiation (PAR) and were generally higher than those of previous studies, not only from the subarctic Pacific but also from the world’s oceans. To examine the effect of iron availability on Ψ in the WSG, Ψ values were estimated from the data of two in situ iron fertilization experiments: the Subarctic Pacific Iron Experiment for Ecosystem Dynamics Study I (SEEDS-I) and II (SEEDS-II). We found that iron availability did not affect Ψ values. Overall, this study revealed that Ψ values changed remarkably in the WSG during the summer, and that higher values were found at the stations where moderate PAR levels (ca. 10–30 mol photons m−2 day−1) were observed and where autotrophic flagellates predominated in the phytoplankton assemblages.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • Ayers JM, Lozier MS (2012) Unraveling dynamical controls on the North Pacific carbon sink. J Geophys Res 117:C01017. doi:10.1029/2011JC007368

    Google Scholar 

  • Falkowski PG (1981) Light-shade adaptation and assimilation numbers. J Plankton Res 3:203–216

    Article  Google Scholar 

  • Falkowski PG, Raven J (2007) Aquatic photosynthesis, 2nd edn. Princeton University Press, New Jersey, pp 351–353

    Google Scholar 

  • Favorite F, Dodimead AJ, Hirano K (1976) Oceanography of the Subarctic Pacific region, 1960–71. Bull Int North Pacific Comm 13:195

    Google Scholar 

  • Fukuyo Y, Takano H, Chihara M, Matsuoka K (eds) (1990) Red tide organisms in Japan—an illustrated taxonomic guide. Uchida Rokakuho, Tokyo, pp 162–331

    Google Scholar 

  • Furnas MJ (1982) Growth rates of summer nanophytoplankton (<10 μm) populations in lower Narragansett Bay, Rhode Island. USA Mar Biol 70:105–115

    Article  Google Scholar 

  • Goes JI, Sasaoka K, Gomes HR, Saitoh S, Saino T (2004) A comparison of the seasonality and interannual variability of phytoplankton biomass and production in the western and eastern gyres of the subarctic Pacific using multi-sensor satellite data. J Oceanogr 60:75–91

    Article  Google Scholar 

  • Hama T, Miyazaki T, Ogawa Y, Iwakuma T, Takahashi M, Otsuki A, Ichimura S (1983) Measurement of photosynthetic production of a marine phytoplankton population using a stable 13C isotope. Mar Biol 73:31–36

    Article  Google Scholar 

  • Harrison WG, Platt T (1980) Variations in assimilation number of coastal marine phytoplankton: effects of environmental covariates. J Plankton Res 2:249–260

    Article  Google Scholar 

  • Harrison PJ, Boyd PW, Varela DE, Takeda S, Shiomoto A, Odate T (1999) Comparison of factors controlling phytoplankton productivity in the NE and NW subarctic Pacific gyres. Prog Oceanogr 43:205–234

    Article  Google Scholar 

  • Hashimoto S, Shiomoto A (2002) Light utilization efficiency of size-fractionated phytoplankton in the subarctic Pacific, spring and summer 1999: high efficiency of large-sized diatom. J Plankton Res 24:83–87

    Article  Google Scholar 

  • Hattori H, Koike M, Tachikawa K, Saito H, Nagasawa K (2004) Spatial variability of living coccolithophore distribution in the western subarctic Pacific and western Bering Sea. J Oceanogr 60:505–515

    Article  Google Scholar 

  • Honda CM (2003) Biological pump in northwestern North Pacific. J Oceanogr 59:671–684

    Article  Google Scholar 

  • Honda CM, Sasaoka K, Kawakami H, Matsumoto K, Watanabe S, Dickey T (2009) Application of underwater optical data to estimation of primary productivity. Deep-Sea Res I 56:2281–2292

    Article  Google Scholar 

  • Imai K, Nojiri Y, Tsurushima N, Sanino T (2002) Time series of seasonal variation of primary productivity at station KNOT (44°C, 155°E) in the sub-arctic western North Pacific. Deep-Sea Res II 49:5395–5408

    Article  Google Scholar 

  • Isada T, Kuwata A, Saito H, Ono T, Ishii M, Yoshikawa-Inoue H, Suzuki K (2009) Photosynthetic features and primary productivity of phytoplankton in the Oyashio and Kuroshio-Oyashio transition regions of the northwest Pacific. J Plankton Res 31:1009–1025

    Article  Google Scholar 

  • Karp-Boss L, Boss E, Jumars PA (1996) Nutrient fluxes to planktonic osmotrophs in the presence of fluid motion. Oceanogr Mar Biol Annu Rev 34:71–107

    Google Scholar 

  • Komuro C, Narita H, Imai K, Nojiri Y, Jordan RW (2005) Microplankton assemblages at Station KNOT in the subarctic western Pacific, 1999–2000. Deep-Sea Res II 52:2206–2217

    Article  Google Scholar 

  • Kudo I, Noiri Y, Imai K, Nojiri Y, Nishioka J, Tsuda A (2005) Primary productivity and nitrogenous nutrient assimilation dynamics during the Subarctic Pacific Iron Experiment for Ecosystem Dynamics Study. Prog Oceanogr 64:207–221

    Article  Google Scholar 

  • Kudo I, Noiri Y, Cochlan WP, Suzuki K, Aramaki T, Ono T, Nojiri Y (2009) Primary productivity, bacterial productivity and nitrogen uptake in response to iron enrichment during the SEEDS II. Deep-Sea Res II 56:2755–2766

    Article  Google Scholar 

  • Lam PJ, Bishop JK (2008) The continental margin is a key source of iron to the HNLC North Pacific Ocean. Geophys Res Lett 35:L07608. doi:10.1029/2008GL033294

    Article  Google Scholar 

  • Latasa M (2007) Improving estimations of phytoplankton class abundances using CHEMTAX. Mar Ecol Prog Ser 329:13–21

    Article  Google Scholar 

  • Mackey MD, Mackey DJ, Higgins HW, Wright SW (1996) CHEMTAX—a program for estimating class abundances from chemical markers: application to HPLC measurements of phytoplankton. Mar Ecol Prog Ser 144:268–283

    Article  Google Scholar 

  • Mahowald NM, Baker AR, Bergametti G, Brooks N, Duce RA, Jickells TD, Kubilay N, Prospero JM, Tegen I (2005) Atmospheric global dust cycle and iron input to the ocean. Global Biogeochem Cycles 19:GB4025. doi:10.1029/2004GB002402

  • Midorikawa T, Iwano S, Kazuhiro S, Takano H, Kamiya H, Ishii M, Inoue H (2003) Seasonal changes in oceanic pCO2 in the Oyashio region from winter to spring. J Oceanogr 59:871–882

    Article  Google Scholar 

  • Mochizuki M, Shiga N, Saito M, Imai K, Nojiri Y (2002) Seasonal changes in nutrients, chlorophyll a and the phytoplankton assemblage of the western subarctic gyre in the Pacific Ocean. Deep-Sea Res II 49:5421–5439

    Article  Google Scholar 

  • Nishioka J, Ono T, Saito H, Nakatsuka T, Takeda S, Yoshimura T, Suzuki K, Kuma K, Nakabayashi S, Tsumune D, Mitsudera H, Johnson WK, Tsuda A (2007) Iron supply to the western subarctic Pacific: importance of iron export from the Sea of Okhotsk. J Geophys Res 112:C10012. doi:10.1029/2006JC004055

    Article  Google Scholar 

  • Nishioka J, Ono T, Saito H, Sasaoka K, Yoshimura T (2011) Oceanic iron supply mechanisms which support the spring diatom bloom in the Oyashio region, western subarctic Pacific. J Geophys Res 116:C02021. doi:10.1029/2010JC006321

    Google Scholar 

  • Platt T (1986) Primary production of the ocean water column as a function of surface light intensity: algorithms for remote sensing. Deep-Sea Res 33:149–163

    Article  Google Scholar 

  • Platt T, Sathyendranath S (1988) Oceanic primary production: estimation by remote sensing at local and regional scales. Science 241:1613–1620

    Article  Google Scholar 

  • Raven JR (2006) Sensing inorganic carbon: CO2 and HCO3 . Biochem J 396:e5–e7

    Article  Google Scholar 

  • Raven JR, Giordano M, Beardall J, Maberly SC (2011) Algal and aquatic plant carbon concentrating mechanisms in relation to environmental change. Photosynth Res. doi:10.1007/s11120-011-9632-6

  • Scott FJ, Marchant HJ (2005) Antarctic marine protists. Goanna Print, Canberra, pp 13–201

    Google Scholar 

  • Shiomoto A (2000) Efficiency of water-column light utilization in the subarctic northwestern Pacific. Limnol Oceanogr 45:982–987

    Article  Google Scholar 

  • Suzuki K, Minami C, Liu H, Saino T (2002) Temporal and spatial patterns of chemotaxonomic algal pigments in the subarctic Pacific and the Bering Sea during the early summer of 1999. Deep-Sea Res II 49:5685–5704

    Article  Google Scholar 

  • Suzuki K, Hinuma A, Saito H, Kiyosawa H, Liu H, Saino T, Tsuda A (2005) Responses of phytoplankton and heterotrophic bacteria in the northwest subarctic Pacific to in situ iron fertilization as estimated by HPLC pigment analysis and flow cytometry. Prog Oceanogr 64:167–187

    Article  Google Scholar 

  • Suzuki K, Saito H, Isada T, Hattori-Saito A, Kiyosawa H, Nishioka J, Mckay RML, Kuwata A, Tsuda A (2009) Community structure and photosynthetic physiology of phtytoplankton in the north west subarctic Pacific during an in situ iron fertilization experiment (SEED-II). Deep-Sea Res II 56:2733–2744

    Article  Google Scholar 

  • Takahashi T, Sutherland SC, Sweeney C, Poisson A, Metzl N, Tilbrook B, Bates N, Wanninkhof R, Feely RA, Sabine C, Olafsson J, Nojiri Y (2002) Global sea-air CO2 flux based on climatological surface ocean pCO2, and seasonal biological and temperature effects. Deep-Sea Res II 49:1601–1622

    Article  Google Scholar 

  • Thingstad TF (1998) A theoretical approach to structuring mechanisms in the pelagic food web. Hydrobiologia 363:59–72

    Article  Google Scholar 

  • Tomas CR (ed) (1997) Identifying marine phytoplankton. Academic Press, San Diego, pp 5–385

    Book  Google Scholar 

  • Tsuda A, Takeda S, Saito H, Nishioka J, Nojiri Y, Kudo I, Kiyosawa H, Shiomoto A, Tsumune D, Yoshimura T, Aono T, Hinuma A, Kinugasa M, Suzuki K, Sohrin Y, Noiri Y, Tani H, Deguchi Y, Tsurushima N, Ogawa H, Fukami K, Kuma K, Saino T (2003) A mesoscale iron enrichiment in the Western Subarctic Pacific induces a large centric diatom bloom. Science 300:958–961. doi:10.1126/science.1082000

    Article  Google Scholar 

  • Tsuda A, Takeda S, Saito H, Nishioka J, Kudo I, Nojiri Y, Suzuki K, Uematsu M, Wells ML, Tsumune D, Yoshimura T, Aono T, Aramaki T, Cochlan WP, Hayakawa M, Imai K, Isada T, Iwamoto Y, Johnson WK, Kameyama S, Kato S, Kiyosawa H, Kondo Y, Levasseur M, Machida RJ, Nagao I, Nakagawa F, Nakanishi T, Nakatsuka S, Narita A, Noiri Y, Obata H, Ogawa H, Oguma K, Ono T, Sakuragi T, Sasakawa M, Sato M, Shimamoto A, Takata H, Trick CG, Watanabe YW, Wong CS, Yoshie N (2007) Evidence for the grazing hypothesis: grazing reduces phytoplankton responses of the HNLC ecosystem to iron enrichment in the western subarctic Pacific (SEEDS II). J Oceanogr 63:983–994

    Article  Google Scholar 

  • Van Heukelem L, Thomas CS (2001) Computer-assisted high-performance liquid chromatography method development with applications to the isolation and analysis of phytoplankton pigments. J Chromatogr A 910:31–49

    Article  Google Scholar 

  • Welschmeyer NA (1994) Fluorometric analysis of chlorophyll a in the presence of chlorophyll b and pheopigments. Limnol Oceanogr 39:1985–1992

    Article  Google Scholar 

  • Whitney FA (2011) Nutrient variability in the mixed layer of the subarctic Pacific ocean, 1987–2010. J Oceanogr 67:481–492

    Article  Google Scholar 

  • Yasuda I (2003) Hydrographic structure and variability in the Kuroshio-Oyashio transition area. J Oceanogr 59:389–402

    Article  Google Scholar 

  • Young JR, Geisen M, Cros L, Kleijne A, Sprengel C, Probert I, Østergaard JB (2003) A guide to extant coccolithophore taxonomy. International Nannoplankton Association

Download references

Acknowledgments

We wish to thank the captain, crew, and scientists of the R/V Hakuho-Maru (JAMSTEC, Japan), FR/V Kaiyo-Maru (Fisheries Agency of Japan), and R/V Kilo Moana (University of Hawaii, USA) for their helpful assistance. We are also grateful to Dr. A. Sugimoto and Ms. Y. Hoshino for technical support in the POC and the 13C measurements. Thanks are extended to Dr. Y. W. Watanabe for the TIC measurements. This study was partly supported by the Ministry of Education, Culture, Sports, Science and Technology (#18067008 and #24121004) and the Japan Society for the Promotion of Science (#22310002).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yuichi Nosaka.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Nosaka, Y., Isada, T., Kudo, I. et al. Light utilization efficiency of phytoplankton in the Western Subarctic Gyre of the North Pacific during summer. J Oceanogr 70, 91–103 (2014). https://doi.org/10.1007/s10872-013-0217-1

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10872-013-0217-1

Keywords

Navigation