Skip to main content

Advertisement

Log in

Validation of semi-analytical inversion models for inherent optical properties from ocean color in coastal Yellow Sea and East China Sea

  • Original Article
  • Published:
Journal of Oceanography Aims and scope Submit manuscript

Abstract

The performances of three semi-analytical retrieval models for water inherent optical properties were validated in the coastal Yellow Sea and East China Sea, including the Quasi-Analytical Algorithm (QAA), the Garver-Siegel-Maritorena model (GSM) and the Over Constrained Linear Matrix (LM). The model-retrieved parameters, namely absorption coefficients of phytoplankton (a ph), colored dissolved and detrital particulate matter (a dg), total absorption coefficients (a t), and backscattering coefficient of particles (b bp), were compared. The bio-optical datasets collected from a Yellow Sea and East China Sea cruise in April and September 2003 were used in the study. The QAA model performed the best in retrieval for all the coefficients, showing log-transformed root mean square errors of 0.306 for a ph, 0.268 for a dg, 0.144 for a t, and 0.273 for b bp at 443 nm. The LM model showed a slightly larger deviation than the QAA model with a similar error trend for absorption coefficients, but it returned the largest uncertainties for b bp, with log-transformed root mean square error up to 0.646. The GSM model, however, yielded the largest and fluctuating errors along with wavelength for absorption coefficient retrievals. Substituting the fitting parameters from measured data for the empirical spectral parameters, all three models returned better results. These improvements demonstrated that semi-analytical algorithms designed for ocean water need regional modifications before applying to coastal areas. The QAA algorithm may be the most suitable model for retrieval for the Yellow Sea and East China Sea, and future model refinements should concentrate on regional modeling of inherent optical properties.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  • Bricaud A, Mejia C, Patissier DB et al (2007) Retrieval of pigment concentrations and size structure of algal populations from their absorption spectra using multilayered perceptrons. Appl Opt 46(8):1251–1260

    Article  Google Scholar 

  • Campbell JW (1995) The lognormal distribution as a model for bio-optical variability in the sea. J Geophys Res 100:13237–13254

    Article  Google Scholar 

  • Carder KL, Chen FR, Lee ZP et al (1999) Semianalytic Moderate-Resolution Imaging Spectrometer algorithms for chlorophyll a and absorption with bio-optical domains based on nitrate-depletion temperatures. J Geophys Res 104(C3):5403–5421. doi:10.1029/1998jc900082

    Article  Google Scholar 

  • Costa GP, Icely J, Cristina S, Newton A, Moore G, Cordeiro C (2013) Specific absorption coefficient of phytoplankton off the Southwest coast of the Iberian Peninsula: a contribution to algorithm development for ocean colour remote sensing. Cont Shelf Res 52:119–132

    Article  Google Scholar 

  • Cui TW, Zhang J, Tang J et al (2010) Satellite retrieval of inherent optical properties in the turbid waters of the Yellow Sea and the East China Sea. Chin Opt Lett 8(8):721–725

    Article  Google Scholar 

  • Ferrari GM, Bo FG, Babin M (2003) Geo-chemical and optical characterizations of suspended matter in European coastal waters. Estuar Coast Shelf Sci 57(1–2):17–24

    Article  Google Scholar 

  • Gao X, Song J (2005) Phytoplankton distributions and their relationship with the environment in the Changjiang Estuary, China. Mar Pollut Bull 50(3):327–335. doi:10.1016/j.marpolbul.2004.11.004

    Article  Google Scholar 

  • Garver SA, Siegel DA (1997) Inherent optical property inversion of ocean color spectra and its biogeochemical interpretation 1. Time series from the Sargasso Sea. J Geophys Res 102(C8):18607–18625

    Article  Google Scholar 

  • Gordon HR, Brown OB, Evans RH et al (1988) A semi-analytical radiance model of ocean color. J Geophys Res 93(20):10909–10924

    Article  Google Scholar 

  • HOBI-labs Inc. (2003) Backscattering Sensor Calibration manual (Revision J). Available at www.hobilabs.com

  • Hoge FE, Lyon PE (1996) Satellite retrieval of inherent optical properties by linear matrix inversion of oceanic radiance models:an analysis of model and radiance measurement errors. J Geophys Res 101(C7):16631–16648

    Article  Google Scholar 

  • Hooker SB, Maritorena S (2000) An evaluation of oceanographic radiometers and deployment methodologies. J Atmos Ocean Technol 17:811–830

    Article  Google Scholar 

  • Hu LM, Lin T, Shi XF, Yang ZS, Wang HJ, Zhang G et al (2011) The role of shelf mud depositional process and large river inputs on the fate of organochlorine pesticides in sediments of the Yellow and East China seas. Geophys Res Lett 38:L03602. doi:10.1029/2010GL045723

    Google Scholar 

  • Huang D, Zhang T, Zhou F (2010) Sea-surface temperature fronts in the Yellow and East China Seas from TRMM microwave imager data. Deep Sea Res Part II 57:1017–1024

    Article  Google Scholar 

  • IOCCG (2006) Remote sensing of inherent optical properties: Fundamentals, tests of algorithms, and applications. Lee Z P, Reports of the International Ocean-Color Coordinating Group, No. 5

  • Le CF, Li YM, Zha Y et al (2009) Validation of a quasi-analytical algorithm for highly turbid eutrophic water of Meiliang Bay in Taihu Lake, China. IEEE Trans Geosci Remote Sens 47(8):2492–2500

    Article  Google Scholar 

  • Lee ZP, Carder KL (2004) Absorption spectrum of phytoplankton pigments derived from hyperspectral remote-sensing reflectance. Remote Sens Environ 89(3):361–368

    Article  Google Scholar 

  • Lee ZP, Carder KL, Arnone RA (2002) Deriving inherent optical properties from water color: a multiband quasi-analytical algorithm for optically deep waters. Appl Opt 41(27):5755–5772

    Article  Google Scholar 

  • Lee ZP, Weidemann A, Kindle J, Arnone R, Carder KL, Davis C (2007) Euphotic zone depth: its derivation and implication to ocean-color remote sensing (QAA-V4). J Geophys Res 112:C03009

    Google Scholar 

  • Lee ZP, Lubac B, Werdell J, Arnone R (2009) An update of the Quasi-Analytical Algorithm (QAA_v5). http://www.ioccg.org/groups/Software_OCA/QAA_v5.pdf

  • Maritorena S, Siegel David A, Peterson AR (2002) Optimization of a semianalytical ocean color model for global-scale applications. Appl Opt 41(15):2705–2714

    Article  Google Scholar 

  • Marra J, Trees CC, O’Reilly JE (2007) Phytoplankton pigment absorption: a strong predictor of primary productivity in the surface ocean. Deep Sea Res 54:155–163

    Article  Google Scholar 

  • Matsuoka A, Hooker SB, Bricaud A, Gentili B, Babin M (2013) Estimating absorption coefficients of colored dissolved organic matter (CDOM) using a semi-analytical algorithm for southern Beaufort Sea waters: application to deriving concentrations of dissolved organic carbon from space. Biogeosciences 10:917–927

    Article  Google Scholar 

  • Mélin F, Zibordi G, Berthon JF (2007) Assessment of satellite ocean color products at a coastal site. Remote Sens Environ 110(2):192–215

    Article  Google Scholar 

  • Morel A (1974) Optical properties of pure water and pure sea water. In: Jerlov NG, Nielsen ES (eds) Optical aspects of oceanography. Academic, New York, pp 1–24

  • Morel A (1988) Optical modeling of the upper ocean in relation to its biogenous matter content case I waters. J Geophys Res Oceans 93(C9):10749–10768

    Article  Google Scholar 

  • Mouw CB, Yoder JA, Doney SC (2012) Impact of phytoplankton community size on a linked global ocean optical and ecosystem model. J Mar Syst 89(1):61–75. doi:10.1016/j.jmarsys.2011.08.002

    Article  Google Scholar 

  • Nagamani PV, Chauhan P, Sanwlani N (2011) Comparison of inherent optical properties (IOPs) in open and coastal waters of Arabian Sea using in-situ bio-optical data. J Indian Soc Remote Sens 39(4):455–462. doi:10.1007/s12524-011-0100-8

    Article  Google Scholar 

  • Pope R, Fry E (1997) Absorption spectrum (380–700 nm) of pure waters: II. Integrating cavity measurements. Appl Opt 36(33):8710–8723

    Article  Google Scholar 

  • Qing S, Tang J, Cui T et al (2011) Retrieval of inherent optical properties of the Yellow Sea and East China Sea using a quasi-analytical algorithm. Chin J Oceanol Limnol 29(1):33–45

    Article  Google Scholar 

  • Rehm E, McCormick NJ (2011) Inherent optical property estimation in deep waters. Opt Express 19(25):24986–25005

    Article  Google Scholar 

  • Roesler CS, Perry MJ (1995) In situ phytoplankton absorption, fluorescence emission, and particulate backscattering spectra determined from reflectance. J Geophys Res 100(C7):13279–13294

    Article  Google Scholar 

  • Roesler CS, Perry MJ, Carder KL (1989) Modeling in situ phytoplankton absorption from total absorption spectra in productive inland marine waters. Limnol Oceanogr 34(38):1510–1523

    Article  Google Scholar 

  • Shanmugam P, Ahn YH, Ryu JH et al (2010) An evaluation of inversion models for retrieval of inherent optical properties from Ocean color in coastal and open sea waters around Korea. J Oceanogr 66:815–830

    Article  Google Scholar 

  • Siegel DA, Maritorena S, Nelson NB (2002) Global distribution and dynamics of colored dissolved and detrital organic materials. J Geophys Res 107. doi:10.1029/2001JC000965

  • Siswanto E, Tang J, Yamaguchi H, Ahn Y-H, Ishizaka J, Yoo S, Kim S-W, Kiyomoto Y, Yamada K, Chiang C, Kawamura H (2011) Empirical ocean color algorithms to retrieve chlorophyll-a, total suspended matter, and colored dissolved organic matter absorption coefficient in the Yellow and East China Seas. J Oceanogr 67:627–650. doi:10.1007/s10872-011-0062-z

    Article  Google Scholar 

  • Song Q, Tang J (2006) The study on the scattering properties in the Huanghai Sea and East China Sea. Acta Oceanol Sin 28(4):57–63 (In Chinese with English abstract)

    Google Scholar 

  • Song Q, Tang J, Ma R (2008) Correction of back scattering coefficients in different water bodies. Ocean Technol 27(1):48–52 (In Chinese with English abstract)

    Google Scholar 

  • Tang J, Wang X, Song Q et al (2004) The statistic inversion algorithms of water constituents for the Huanghai Sea and the East China Sea. Acta Oceanol Sin 23:617–626 (In Chinese with English abstract)

    Google Scholar 

  • Wang X, Tang J, Song Q et al (2006) A research on statistical retrieval algorithms and spectral characteristics of the total absorption coefficients in the Yellow Sea and the East China Sea. Chin J Oceanol Limnol 3:236–242

    Google Scholar 

  • Wang W, Dong Q, Shang S et al (2009) An evaluation of two semi-analytical ocean color algorithms for waters of the South China Sea. J Trop oceanogr 28(5):36–42 (In Chinese with English abstract)

    Google Scholar 

  • Westberry TK, Siegel DA, Subramaniam A (2005) An improved bio-optical model for the remote sensing of Trichodesmium spp blooms. J Geophys Res Oceans 110(C6). doi:C0601210.1029/2004jc002517

  • Yamaguchi H, Ishizaka J, Siswanto E, Son YB, Yoo S, Kiyomoto Y (2013) Seasonal and spring interannual variations of satellite-observed chlorophyll-a in the Yellow and East China Seas: New datasets with reduced interference from high concentration of resuspended sediment. Cont Shelf Res 59:1–9. doi:10.1016/j.csr.2013.03.009

    Article  Google Scholar 

  • Zhang M, Tang J, Dong Q, et al. (2010a) Backscattering ratio variation and its implications for studying particle composition: A case study in Yellow and East China seas. J Geophys Res Oceans 115(C12014). doi:10.1029/2010JC006098

  • Zhang M, Tang J, Dong Q et al (2010b) Retrieval of total suspended matter concentration in the Yellow and East China Seas from MODIS imagery. Remote Sens Environ 114(2):392–403. doi:10.1016/j.rse.2009.09.016

    Article  Google Scholar 

Download references

Acknowledgments

The authors are grateful to the members of field sample experiment team for their hard work in the Yellow Sea and East China Sea Spring and Autumn Cruises conducted by the National Satellite Ocean Application Service (NSOAS) and HY-l (first marine satellite of China, means Ocean-1) satellite ground application system. This work was funded by the NSFC projects (41331174, 41301366, 41071261, and 41023001).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Liqiong Chen.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Huang, J., Chen, L., Chen, X. et al. Validation of semi-analytical inversion models for inherent optical properties from ocean color in coastal Yellow Sea and East China Sea. J Oceanogr 69, 713–725 (2013). https://doi.org/10.1007/s10872-013-0202-8

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10872-013-0202-8

Keywords

Navigation