Skip to main content
Log in

Empirical method of diurnal correction for estimating sea surface temperature at dawn and noon

  • Short Contribution
  • Published:
Journal of Oceanography Aims and scope Submit manuscript

Abstract

An empirical method has been developed for estimation of sea surface temperature (SST) at dawn and noon in local time from microwave observations at other times of the day. By using solar radiation, microwave sea surface wind, and SSTs, root-mean-square differences were reduced to approximately 0.75 and 0.8 °C for dawn and noon, respectively. The pseudo SST variation and spatial patterns found in daily mean SST values by simple averaging of samples were damped down by use of diurnal correction. The satellite SST with the diurnal correction shows highly significant coherent variation with in-situ measurements.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13

References

  • Barnes BB, Hu C, Muller-Karger F (2011) An improved high-resolution SST climatology to assess cold water events off Florida. IEEE Geosci Remote Sens Lett 8:769–773. doi:10.1109/LGRS.2011.2111353

    Article  Google Scholar 

  • Barnie DJ, Guilyardi E, Madec G, Slingo JM, Woolnough SJ, Cole J (2008) Impact of resolving the diurnal cycle in an ocean-atmosphere GCM. Part 2: A diurnally coupled CGCM. Clim Dyn 31:909–925. doi:10.1007/s00382-008-04290z

    Google Scholar 

  • Barnie DJ, Woolnough SJ, Slingo JM, Guilyardi E (2005) Modeling diurnal and intraseasonal variability of the ocean mixed layer. J Clim 18:1190–1202

    Article  Google Scholar 

  • Bond NA, Cronin MF, Sabine C, Kawai Y, Ichikawa H, Freitag P, Ronnholm K (2011) Upper ocean responce to Typhoon Choi-Wan as measured by the Kuroshio Extension Observatory buoy. J Geophys Res 116. doi:10.1029/2010JC006548

  • Chelton D, Schlax M, Freilich M, Milliff R (2004) Satellite measurements reveal persistent small-scale features in ocean winds. Science 303:978–983

    Article  Google Scholar 

  • Cronin MF, Meinig C, Sabine CL, Ichikawa H, Tomita H (2008) Surface mooring network in the Kuroshio Extension. IEEE Syst J 2:424–430

    Article  Google Scholar 

  • Danabasoglu G, Large WG, Tribbia JJ, Brieglib PRGBP (2006) Diurnal coupling in the ropical oceans of CCSM3. J Clim 19:2347–2365

    Article  Google Scholar 

  • de Souza RB, Mata MM, Garcia CAE, Kampel M, Oliveira EN, Lorenzzetti JA (2006) Multi-sensor satellite and in situ measurements of a warm core ocean eddy south of the Brazil-Malvinas Confluence region. Remote Sens Environ 100:52–66

    Article  Google Scholar 

  • Dong C, Nencioli F, Liu Y, McWilliams JC (2011) An automated approach to detect oceanic eddies from satellite remotely sensed sea surface temperature data. IEEE Geosci Remote Sens 8:1055–1059

    Article  Google Scholar 

  • Donlon C, Robinson I, Casey KS, Vazquez-Cuervo J, Armstrong E, Arino O, Gentemann CL, May D, LeBorgne P, Piollé J, Barton I, Beggs H, Poulter DJS, Merchant CJ, Bingham A, Heinz S, Harris A, Wick G, Emery B, Minnett P, Evans R, Llewellyn-Jones D, Mutlow C, Reynolds RW, Kawamura H, Rayner N (2007) The global ocean data assimilation experiment high-resolution sea surface temperature pilot project. Bull Am Meteorol Soc 88:1197–1213

    Google Scholar 

  • Donlon CJ, Martin M, Stark J, Roberts-Jones J, Fiedler E, Wimmer W (2011) The operational sea surface temperature and sea ice analysis (OSTIA) system. Remote Sens Environ 116:140–158

    Article  Google Scholar 

  • Donlon CJ, Minnett PJ, Gentemann CL, Nightingale TJ, Barton IJ, Ward B, Murray MJ (2002) Toward improved validation of satellite sea surface skin temperature measurements for climate research. J Clim 15:353–369

    Article  Google Scholar 

  • Dunbar R, Lungu T, Weiss B, Stiles B, Huddleston J, Callahan P, Shirtliffe G, Perry K, Hsu C, Mears C, Wentz F, Smith D (2006) QuikSCAT Science Data Product User Manual, Version 3.0, JPL Document D-18053-Rev A. Jet Propulsion Labolatory, Pasadena

  • Eyre J, Andersson E, Charpentier E, Ferranti L, Lageuille J, Ondras M, Pailleux J, Rabier F, Riishojgaard LP (2009) Requirements of numerical weather prediction for observations of the oceans. In: Hall J, Harrison D, Stammer D (eds) Proceedings of OceanObs’09: sustained ocean observations and information for society, vol 2. ESA Publication WPP-306, Venice. doi:10.5270/OceanObs09.cwp.26

  • Gentemann CL, Donlon CJ, Stuart-Menteth A, Wentz FJ (2003) Diurnal signals in satellite sea surface temperature measurements. Geophys Res Lett 30. doi:10.1029/2002GL016291

  • Grinsted A, Moore JC, Jevrejeva S (2004) Application of the cross wavelet transform and wavelet coherence to geophysical time series. Nonlinear Proc Geophys 11:561–566

    Article  Google Scholar 

  • Guan L, Kawamura H (2004) Merging satellite infrared and microwave SSTs: methodlogy and evaluation of the new SST. J Oceanogr 60:905–912

    Article  Google Scholar 

  • Hosoda K (2010) A review of satellite-based microwave observations of sea surface temperatures. J Oceanogr 66, 439–473

    Article  Google Scholar 

  • Hosoda K (2011) Algorithm for estimating sea surface temperatures based on Aqua/MODIS global ocean data. 2. automated quality check process for eliminating cloud contamination. J Oceanogr 67:791–805. doi:10.1007/s10872-011-0077-5

    Google Scholar 

  • Hosoda K, Kawamura H (2004a) Examination of the merged sea surface temperature using wavelet analysis. J Oceanogr 60:843–852

    Google Scholar 

  • Hosoda K, Kawamura H (2004b) Global space-time statistics of sea surface temperature estimated from AMSR-E data. Geophys Res Lett 31. doi:10.1029/2004GL020317

  • Hosoda K, Kawamura H (2005) Seasonal variation of space/time statistics of short-term sea surface temperature variability in the Kuroshio region. J Oceanogr 61:709–720

    Article  Google Scholar 

  • Hosoda K, Kawamura H, Lan K-W, Shimada T, Sakaida F (2012) Temporal scale of sea surface temperature fronts revealed by microwave observations. IEEE Geosci Remote Sens Lett 9:3–7. doi:10.1109/LGRS.2011.2158512

    Google Scholar 

  • Hosoda K, Murakami H, Shibata A, Sakaida F, Kawamura H (2006) Difference characteristics of sea surface temperature observed by GLI and AMSR aboard ADEOS-II. J Oceanogr 62:339–350

    Article  Google Scholar 

  • Hosoda K, Qin H (2011) Algorithm for estimating sea surface temperatures based on Aqua/MODIS global ocean data. 1. Development and validation of the algorithm. J Oceanogr 67:135–145. doi:10.1007/s10872-011-0007-6

    Article  Google Scholar 

  • Hu C, Muller-Karger F, Murch B, Myhre D, Taylor J, Luerssen R, Moses C, Zhang C, Gramer L, Hendee J (2009) Building an automated integrated observing system to detect sea surface temperature anomaly events in the Florida Keys. IEEE Trans Geosci Remote Sens 47:1607–1620

    Article  Google Scholar 

  • Kawai Y, Kawamura H (2002) Evaluation of the diurnal warming of sea surface temperature using satellite-derived marine meteorological data. J Oceanogr 58:805–814

    Article  Google Scholar 

  • Kawai Y, Kawamura H, Takahashi S, Hosoda K, Murakami H, Kachi M, Guan L (2006) Satellite-based high-resolution global optimum interpolation sea surface temperature data. J Geophys Res 111. doi:10.1029/2005J003313

  • Kawamura H (2002) New generation sea surface temperature for ocean weather forecasts. Extended Abstracts of Techno-Oecan 2002 Kobe International Exhibition Hall, Kobe, pp 20–22

  • Kawamura H, Qin H, Hosoda K, Sakaida F, Qiu C (2010) Advanced sea surface temperature retrieval using the Japanese geostationary satellite, Himawari-6. J Oceanogr 66:955–864

    Google Scholar 

  • Kurihara Y, Sakurai T, Kuragano T (2006) Global daily sea surface temperature analysis using data from satellite microwave radiometer, satellite infrared radiometer and in-situ observations. Weather Bull JMA 73:s1–s18 (in Japanese)

    Google Scholar 

  • Lan K-W, Kawamura H, Lee M-A, Lu H-J, Shimada T, Hosoda K, Sakaida F (2012) Relationship between albacore (thunnus alalunga) fishing grounds in the Indian Ocean and the thermal environment revealed by cloud-free microwave sea surface temperature. Fish Res 113:1–7

    Google Scholar 

  • Le Traon PY, Dibarboure G, Ducet N (2001) Use of high-resoluition model to analyze the mapping capabilities of multiple-altimeter missions. J Atmos Ocean Technol 18:1277–1288

    Article  Google Scholar 

  • Martin M, Dash P, Ignatov A, Banzon V, Beggs H, Brasnett B, Cayula J-F, Cummings J, Donlon C, Gentemann C, Grumbine R, Ishizaki S, Matun E, Reynolds RW, Roberts-Jones J (2012) Group for high resolution sea surface termperature (GHRSST) analysis fields intercomparison. Part 1 A GHRSST multi-product ensemble (GMPE). Deep Sea Res 77–80:21–30

    Google Scholar 

  • Meissner T, Wentz FJ (2006) Ocean retrievals for WindSat: Radiative transfer model, algorithm, validation. The 9th specialist meeting on microwave radiometry and remote sensing applications paper number Catalog # 06EX1174C. http://www.remss.com/support/rss_presentations_by_year.html

  • Nakagawa K (2010) GCOM-W and GCOM-C project status. In: 2010 IEEE international IEEE geoscience and remote sensing symposium (IGARSS), pp 1355–1358. doi:10.1109/IGARSS.2010.5649299

  • Reynolds R, Rayner NA, Smith TM, Stokes DC, Wang W (2002) An improved in-situ and satellite SST analysis for climate. J Clim 15:1609–1625

    Article  Google Scholar 

  • Reynolds RW, Smith TM, Liu C, Casey DBCKS, Schlax MG (2007) Daily high-resolution-blended analyses for sea surface temperature. J Clim 20:5473–5496

    Google Scholar 

  • Rienecker MM, Suarez MJ, Gelaro R, Todling R, Bacmeister J, Liu E, Bosilovich MG, Schubert SD, Takacs L, Kim G-K, Bloom S, Chen J, Collins D, Conaty A, da Silva A, Gu W, Joiner J, Koster RD, Lucchesi R, Molod A, Owens T, Pawson S, Redder PPCR, Reichle R, Robertson FR, Ruddick AG, Sienkeiwicz M, Woollen J (2011) MERRA: NASA’s modern-era retrospective analysis for research and applications. J Clim 24:3624–2648

    Google Scholar 

  • Sakaida F, Kawamura H, Takahashi S, Shimada T, Kawai Y, Hosoda K, Guan L (2009) Research, development, and demonstration operation of the new generation sea surface temperature for open ocean (NGSST-O) product. J Oceanogr 65:859–870

    Article  Google Scholar 

  • Shibata A (2004) AMSR/AMSR-E SST algorithm developments—removal of ocean wind effect. It J Remote Sens 30/31:131–142

    Google Scholar 

  • Shibata A (2006) Features of ocean microwave emission changed by wind at 6 GHz. J Oceanogr 62:321–330

    Article  Google Scholar 

  • Shibata A (2007) Effect of air–sea temperature difference on ocean microwave brightness temperature estimated from AMSR, SeaWinds, and buoys. J Oceanogr 63:863–872

    Article  Google Scholar 

  • Shinoda T, Hendon H (1998) Mixed layer modeling of intra-seasonal variability in the tropical western Pacific and Indian Oceans. J Clim 11:2668–2685

    Article  Google Scholar 

  • Small RJ, deSzoeke SP, Xie SP, O’Neil L, Seo H, Song Q, Cornillon P, Spall M, Minobe S (2008) Air–sea interaction over ocean fronts and eddies. Dyn Atmos Oceans 45:274–319

    Article  Google Scholar 

  • Sybrandy WAL, Niiler PP, Martin C, Scuba W, Charpentier E, Meldrum DT (2009) Global drifter programme barometer drifter design reference. Technical report, Data Buoy Cooperation Panel Techinical Document No.4, revision 2.2

  • Torrence C, Webster PJ (1999) Interdecadal changes in the ENSO-monsoon system. J Clim 12:2679–2690

    Article  Google Scholar 

  • Ward B (2006) Near-surface ocean temperature. J Geophys Res 111. doi:10.1029/2004JC002689

  • Woolnough SJ, Vitart F, Balmaseda MA (2007) The role of the ocean in the Madden–Julian oscillation: implications for MJO prediction. Q J R Meteorol Soc 133:117–128. doi:10.1002/qj.4

    Google Scholar 

  • Xie S-P (2004) Satellite observations of cool ocean–atmosphere interaction. Bull Am Meteorol Soc 85:195–208

    Article  Google Scholar 

  • Zhang Y, Rossow WB, Lacis AA, Oinas V, Mishchenko MI (2004) Calculation of radiative fluxes from the surface to top of atmosphere based on ISCCP and other global data sets: refinements of the radiative transfer model and the input data. J Geophys Res 109. doi:10.1029/2003JD004457

Download references

Acknowledgments

This study was supported by the Center for Atmosphere and Oceanic Studies (CAOS), Tohoku University. Two anonymous reviewers and editor gave valuable advice which improved this paper substantially. The ISCCP-FD data are coutesy of the NASA Goddard Institute for Space Studies. The JASMES and AMSR-E data were provided by the JAXA Earth Observation Research Center. The Windsat data were distributed by Remote Sensing Systems. The altimeter product in use was distributed by AVISO with support from CNES. The Global Modeling and Assimilation Office (GMAO) and the GES DISC distributed the MERRA wind data. The KEO buoy was supported by the NOAA Ocean Climate Observations Program.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kohtaro Hosoda.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Hosoda, K. Empirical method of diurnal correction for estimating sea surface temperature at dawn and noon. J Oceanogr 69, 631–646 (2013). https://doi.org/10.1007/s10872-013-0194-4

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10872-013-0194-4

Keywords

Navigation