Skip to main content

Advertisement

Log in

Size-based analysis for the state and heterogeneity of pelagic ecosystems in the northern South China Sea

  • Original Article
  • Published:
Journal of Oceanography Aims and scope Submit manuscript

Abstract

Analyzing and evaluating the state and heterogeneity of ecosystems are required for ecosystem-based management. The abundance size spectrum is a promising approach for evaluating pelagic ecosystems. To analyze the heterogeneity of pelagic ecosystems in the northern South China Sea (NSCS) in summer, a simplified abundance size spectrum (SASS) was proposed. Picophytoplankton (0.2–2 μm), microphytoplankton (10–160 μm), mesozooplankton (160–2000 μm), and macrozooplankton (505–8,000 μm) were sampled in the NSCS in August 2007, and used to build the SASS. On the basis of the SASS parameters, spatial heterogeneity in pelagic ecosystems was detected, and the study waters were distinctly categorized into the river plume or upwelling-affected area and its adjacent coastal area, the deepwater area, area near the Luzon Strait, and the offshore shelf area. Contrasts of SASS parameters between the eastern and western pelagic ecosystems out of the Pear River estuary demonstrate the fast ecosystem response to the spreading of the Pearl River plume. These results indicate that the SASS could be a good indicator for the state of pelagic ecosystems in the NSCS. In addition, the SASS approach is easily available and labor- and time-saving, thus the SASS could be a useful tool for monitoring and evaluating the state of pelagic ecosystems and their responses to perturbations.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  • Bell T, Kalff J (2001) The contribution of picophytoplankton in marine and freshwater systems of different trophic status and depth. Limnol Oceanogr 46(5):1243–1248

    Article  Google Scholar 

  • Blanchard JL, Jennings S, Law R, Castle MD, McCloghrie P, Rochet M-J, Benoît E (2009) How does abundance scale with body size in coupled size-structured food webs? J Anim Ecol 78(1):270–280

    Article  Google Scholar 

  • Blanco JM, Echevarría F, García CM (1994) Dealing with size-spectra: some conceptual and mathematical problems. Sci Mar 58(1–2):17–29

    Google Scholar 

  • Borgmann U (1982) Particle-size-conversion efficiency and total animal production in pelagic ecosystems. Can J Fish Aquat Sci 39:668–674

    Article  Google Scholar 

  • Boudreau PR, Dickie LM (1992) Biomass spectra of aquatic ecosystems in relation to fishies yield. Can J Fish Aquat Sci 49:1528–1538

    Article  Google Scholar 

  • Boudreau PR, Dickie LM, Kerr SR (1991) Body-size spectra of production and biomass as system-level indicators of ecological dynamics. J Theor Biol 152(3):329–339. doi:10.1016/s0022-5193(05)80198-5

    Article  Google Scholar 

  • Chen B, Wang L, Song S, Huang B, Sun J, Liu H (2011) Comparisons of picophytoplankton abundance, size, and fluorescence between summer and winter in northern South China Sea. Cont Shelf Res 31(14):1527–1540

    Article  Google Scholar 

  • Dong L, Su J, Ah Wong L, Cao Z, Chen J-C (2004) Seasonal variation and dynamics of the Pearl River plume. Cont Shelf Res 24(16):1761–1777. doi:10.1016/j.csr.2004.06.006

    Article  Google Scholar 

  • Fry B, Quiñones RB (1994) Biomass spectra and stable isotope indicators of trophic level in zooplankton of the northwest Atlantic. Mar Ecol Prog Ser 112:201–204

    Article  Google Scholar 

  • Gan J, Li L, Wang D, Guo X (2009) Interaction of a river plume with coastal upwelling in the northeastern South China Sea. Cont Shelf Res 29(4):728–740

    Article  Google Scholar 

  • González HE, Giesecke R, Vargas CA, Pavez M, Iriarte J, Santibáñez P, Castro L, Escribano R, Pagès F (2004) Carbon cycling through the pelagic food web in the northern Humboldt Current off Chile (23°S). ICES J Mar Sci 61:572–584

    Article  Google Scholar 

  • González-Oreja JA, Saiz-Salinas JI (1999) Loss of heterotrophic biomass structure in an extreme estuarine environment. Estuar Coast Shelf Sci 48:391–399

    Article  Google Scholar 

  • Griggiths D (1998) Sampling effort, regression method, and the shape and slope of size-abundance relations. J Anim Ecol 67:795–804

    Article  Google Scholar 

  • Guo D-h, Huang J-q, Li S-j (2011) Planktonic copepod compositions and their relationships with water masses in the southern Taiwan Strait during the summer upwelling period. Cont Shelf Res 31(6, Suppl 1): S67–S76. doi:10.1016/j.csr.2011.01.019

  • Halpern BS, McLeod KL, Rosenberg AA, Crowder LB (2008) Managing for cumulative impacts in ecosystem-based management through ocean zoning. Ocean Coast Manag 51(3):203–211. doi:10.1016/j.ocecoaman.2007.08.002

    Article  Google Scholar 

  • Havlicek TD, Carpenter SR (2001) Pelagic species size distribution in lakes: are they discontinuous? Limnol Oceanogr 46(5):1021–1033

    Article  Google Scholar 

  • Hong H, Chai F, Zhang C, Huang B, Jiang Y, Hu J (2011) An overview of physical and biogeochemical processes and ecosystem dynamics in the Taiwan Strait. Cont Shelf Res 31(6, Supplement 1):S3–S12. doi:10.1016/j.csr.2011.02.002

    Article  Google Scholar 

  • Hu J, Kawamura H, Hong H, Qi Y (2000) A review on the currents in the South China Sea: seasonal circulation, South China Sea Warm Current and Kuroshio intrusion. J Oceanogr 56(6):607–624. doi:10.1023/a:1011117531252

    Article  Google Scholar 

  • Huang B, Lan W, Cao Z, Dai M, Huang L, Jiao N (2008) Spatial and temporal distribution of nanoflagellates in the northern South China Sea. Hydrobiologia 605:143–157

    Article  Google Scholar 

  • Huang B, Hu J, Xu H, Cao Z, Wang D (2010) Phytoplankton community at warm eddies in the northern South China Sea in winter 2003/2004. Deep Sea Res I 57:1792–1798

    Google Scholar 

  • Hwang J-S, Kumar R, Dahms H-U, Tseng L-C, Chen Q-C (2010) Internal, seasonal, and diurnal variations in vertical and horizontal distribution patterns of 6 Oithona spp. (Copepod: Cyclopoida) in the South China Sea. Zool Stud 49:220–229

    Google Scholar 

  • IMBER (2005) Science plan and implementation strategy. IGBP Report No. 52, IGBP, Stockholm

  • Jackson GA, Maffione R, Costello DK, Alldredge AL, Logan BE, Dam HG (1997) Particle-size spectra between 1 μm and 1 cm at Monterey Bay determined using multiple instruments. Deep-Sea Res I 44:1739–1767

    Article  Google Scholar 

  • Jennings S, Brander K (2010) Predicting the effects of climate change on marine communities and the consequences for fisheries. J Mar Syst 79(3–4):418–426. doi:10.1016/j.jmarsys.2008.12.016

    Article  Google Scholar 

  • Jennings S, Warr KJ (2003) Smaller predator-prey body size ratios in longer food chains. Proc R Soc Lond B 270(1522):1413–1417

    Article  Google Scholar 

  • Jennings S, Pinnegar JK, Polunin NVC, Boon TW (2001) Weak cross-species relationships between body size and trophic level belie powerful size-based trophic structuring in fish communities. J Anim Ecol 70:934–944

    Article  Google Scholar 

  • Jennings S, Pinnegar JK, Polunin NVC, Warr KJ (2002) Linking size-based and trophic analyses of benthic community structure. Mar Ecol Prog Ser 226:77–85

    Article  Google Scholar 

  • Jing ZY, Qi YQ, Hua ZL, Zhang H (2009) Numerical study on the summer upwelling system in the northern continental shelf of the South China Sea. Cont Shelf Res 29:467–478

    Google Scholar 

  • Katsanevakis S, Stelzenmüller V, South A et al (2011) Ecosystem-based marine spatial management: review of concepts, policies, tools, and critical issues. Ocean Coast Manag 54(11):807–820. doi:10.1016/j.ocecoaman.2011.09.002

    Article  Google Scholar 

  • Ke Z-x, Huang L-m, Tan Y-h, Yin J-q (2011) Species composition and abundance of phytoplankton in the northern South China Sea in summer 2007. J Trop Oceanogr 30(1):131–143

    Google Scholar 

  • Kerr SR, Dickie LM (2001) The biomass spectrum: a predator-prey theory of aqautic production. Columbia University Press, New York

    Google Scholar 

  • Lan W, Huang B, Dai M, Ning X, Huang L, Hong H (2009) Dynamics of heterotrophic dinoflagellates off the Pearl River Estuary, northern South China Sea. Estuar Coast Shelf Sci 85:422–430

    Article  Google Scholar 

  • Lee Chen Y-l, Chen H-Y (2006) Seasonal dynamics of primary and new production in the northern South China Sea: the significance of river discharge and nutrient advection. Deep-Sea Res I 53(6): 971–986. doi:10.1016/j.dsr.2006.02.005

    Google Scholar 

  • Li KZ, Yin JQ, Huang LM, Tan YH (2006) Spatial and temporal variations of mesozooplankton in the Pearl River estuary, China. Estuar Coast Shelf Sci 67(4):543–552. doi:10.1016/j.ecss.2005.12.008

    Article  Google Scholar 

  • Li KZ, Yin JQ, Huang LM, Lian SM, Zhang JL, Liu CG (2010) Monsoon-forced distribution and assemblages of appendicularians in the northwestern coastal waters of South China Sea. Estuar Coast Shelf Sci 89:145–153

    Article  Google Scholar 

  • Li KZ, Yin JQ, Huang LM, Song XY (2012) Comparison of siphonophore distributions during the southwest and northeast monsoons on the northwest continental shelf of the South China Sea. J Plankton Res 34(7):636–641

    Article  Google Scholar 

  • Liu H, Chang J, Tseng C-M, Wen L-S, Liu KK (2007) Seasonal variability of picoplankton in the Northern South China Sea at SEATS station. Deep-Sea Res II 54:1602–1616

    Article  Google Scholar 

  • Liu H, Huang L, Tan Y, Song X, Huang J, Li T (2010) Distribution and composition of tintinnids ciliates in the northern South China Sea during summer. Mar Sci Bull 12(2):38–46

    Article  Google Scholar 

  • Liu H, Song X, Huang L, Tan Y, Zhang J (2011) Phytoplankton biomass and production in northern South China Sea during summer: influenced by Pearl River discharge and coastal upwelling. Acta Ecol Sin 31(3):133–136. doi:10.1016/j.chnaes.2011.02.001

    Article  Google Scholar 

  • Mackas DL, Beaugrand G (2010) Comparisons of zooplankton time series. J Mar Syst 79(3–4):286–304. doi:10.1016/j.jmarsys.2008.11.030

    Article  Google Scholar 

  • Marquet PA, Quińones RA, Abades S (2005) Scaling and power-law in ecological systems. J Exp Biol 208:1749–1769

    Article  Google Scholar 

  • Martin ES, Harris RP, Irigoien X (2006a) Latitudinal variation in plankton size spectra in the Atlantic Ocean. Deep-Sea Res II 53:1560–1572

    Article  Google Scholar 

  • Martin ES, Irigoien X, Harris RP, López-Urrutia Á, Zubkov MV, Heywood JL (2006b) Variation in the transfer of energy in marine plankton along a productivity gradient in the Atlantic Ocean. Limnol Oceanogr 51(5):2084–2091

    Article  Google Scholar 

  • Minns CK, Millard ES, Cooley JM, Johnson MG, Hurley DA, Nicholls KH, Robinson GW, Owen GE, Crowder A (1987) Production and biomass size spectra in the Bay of Quinte, A eutrophic ecosystem. Can J Fish Aquat Sci 44(Suppl. 2):148–155

    Article  Google Scholar 

  • Nan F, He Z, Zhou H, Wang D (2011) Three long-lived anticyclonic eddies in the northern South China Sea. J Geophys Res 116(C5):C05002

    Article  Google Scholar 

  • Pan LA, Zhang J, Chen Q, Deng B (2006) Picoplankton community structure at a coastal front region in the northern part of the South China Sea. J Plankton Res 28(3):337–343

    Article  Google Scholar 

  • Parsons TR, Maita Y, Lalli CM (1984) A manual of chemical and biological methods for seawater analysis. Pergamon, Oxford

    Google Scholar 

  • Pimm SL, Lawton JH, Cohen JE (1991) Food web patterns and their consequences. Nature 350(25):669–674

    Article  Google Scholar 

  • Qiu D, Huang L, Zhang J, Lin S (2010) Phytoplankton dynamics in and near the highly eutrophic Pearl River Estuary, South China Sea. Cont Shelf Res 30:177–186

    Article  Google Scholar 

  • Qu T, Kim YY, Yaremchuk M (2004) Can Luzon strait transport play a role in conveying the impact of ENSO to the South China Sea? J Clim 17(18):3644–3657

    Article  Google Scholar 

  • Qu T, Song YT, Yamagata T (2009) An introduction to the South China Sea through flow: its dynamics, variability, and application for climate. Dyn Atmos Ocean 47(1–3):3–14. doi:10.1016/j.dynatmoce.2008.05.001

    Article  Google Scholar 

  • Quinones RA, Platt T, Rodríguez J (2003) Patterns of biomass-size spectra from oligotrophic waters of the Northwest Atlantic. Prog Oceanogr 57:405–427

    Article  Google Scholar 

  • Rodríguez J (1994) Some comments on the size-based structural analysis of the pelagic ecosystem. Sci Mar 58(1-2):1–10

    Google Scholar 

  • Rodríguez J, Mullin MM (1986) Relation between biomass and body weight of plankton in a steady state oceanic ecosystem. Limnol Oceanogr 31:361–371

    Article  Google Scholar 

  • Shen S, Leptoukh GG, Acker JG, Yu Z, Kempler SJ (2008) Seasonal variations of chlorophyll a concentration in the northern South China Sea. IEEE Geosci Remote Sens Lett 5(2):315–319

    Article  Google Scholar 

  • Shin Y-J, Rochet M-J, Jennings S, Field JG, Gislason H (2005) Using size-based indicators to evaluate the ecosystem effects of fishing. ICES J Mar Sci 62:384–396

    Article  Google Scholar 

  • Shu Y, Wang D, Zhu J, Peng S (2011) The 4-D structure of the upwelling and Pearl River plume in the northern South China Sea During summer 2008 revealed by a data assimilative model. Ocean Model 36(3–4):228–241

    Article  Google Scholar 

  • Silvert W (1993) Size-structured models of continental shelf food webs. In: Christensen V, Pauly D (eds) Trophic models of aquatic ecosystem. International Center for Living Aquatic Resource Management, Manila, Philippines, vol 26, pp 40–43

  • Sprules WG, Munawar M (1986) Plankton size spectra in relation to ecosystem productivity, size and perturbation. Can J Fish Aquat Sci 43:1789–1794

    Article  Google Scholar 

  • Spurles WG, Brandt SB, Stewart DJ, Munawar M, Jin EH, Love J (1991) Biomass size spectrum of the Lake Michigan pelagic food web. Can J Fish Aquat Sci 48:105–115

    Article  Google Scholar 

  • Stead TK, Schmid-Araya JM, Schmid PE, Hildrew AG (2005) The distribution of body size in a stream community: one system, many patterns. J Anim Ecol 74:475–487

    Article  Google Scholar 

  • Steele JH, Gifford DJ (2010) Reconciling end-to-end and population concepts for marine ecosystems. J Mar Syst 83(1–2):99–103

    Article  Google Scholar 

  • Su J (2004) Overview of the South China Sea circulation and its influence on the coastal physical oceanography outside the Pearl River Estuary. Cont Shelf Res 24:1745–1760

    Article  Google Scholar 

  • Tan Y, Huang L, Chen Q, Huang X (2004) Seasonal variation in zooplankton composition and grazing impact on phytoplankton standing stock in the Pearl River Estuary, China. Cont Shelf Res 24(16):1949–1968

    Article  Google Scholar 

  • Thiebaux ML, Dickie LM (1992) Models of aquatic biomass size spectra and the common structure of their solutions. J Theor Biol 159(2):147–161

    Article  Google Scholar 

  • Thiebaux ML, Dickie LM (1993) Structure of the body-size spectrum of the biomass in aquatic ecosystems: a consequence of allometry in predator-prey interactions. Can J Fish Aquat Sci 50:1308–1317

    Article  Google Scholar 

  • Tseng L-C, Dahms H-U, Chen Q-C, Hwang J-S (2008) Copepod assemblages of the northern South China Sea. Crustaceana 81(1):1–22

    Article  Google Scholar 

  • Utermöhl H (1958) Zur vervollkommung der quantitativen methodik. Mitt Int Verh Teor Angew Limnol 9:1–38

    Google Scholar 

  • Wang R, Wang K (2003) Field test of capture capabilities of two plankton nets. J Fish China 27(Suppl):98–102

    Google Scholar 

  • Wassmann P (1998) Retention versus export food chains: processes controlling sinking loss from marine pelagic systems. Hydrobiologia 363(1):29–57. doi:10.1023/a:1003113403096

    Google Scholar 

  • Woodward G, Ebenman B, Emmerson M, Montoya JM, Olesen JM, Valido A, Warren PH (2005) Body size in ecological networks. Trends Ecol Evol 20(7):402–409

    Article  Google Scholar 

  • Wu R, Li L (2003) Summarization of study on upwelling system in the South China Sea. J Oceanogr Taiwan Strait 22(2):269–277

    Google Scholar 

  • Xu Z, Chen Y (1989) Aggregated intensity of dominant species of zooplankton in autumn in the East China Sea and Yellow Sea. Chin J Ecol 8:13–15

    Google Scholar 

  • Xu J, Yin K, He L, Yuan X, Ho AYT, Harrison PJ (2008) Phosphorus limitation in the northern South China Sea during late summer: influence of the Pearl River. Deep-Sea Res I 55(10):1330–1342. doi:10.1016/j.dsr.2008.05.007

    Article  Google Scholar 

  • Yang Y, Jiao N (2004) Dynamics of picoplankton in the Nansha Islands area of the South China Sea. Acta Ocean Sin 23(3):493–504

    Google Scholar 

  • Yang Y, Meng Q, Xia H-y, Li R-x, Zhu P-l (2010) Expansion of the Pearl River diluted water in 2006 and its ecological response. J Trop Oceanogr 29(6):15–21

    Google Scholar 

  • Yuan Y, Zheng Q, Dai D, Hu X, Qiao F, Meng J (2006) Mechanism of internal waves in the Luzon Strait. J Geophys Res 111(C11):C11S17. doi:10.1029/2005jc003198

    Article  Google Scholar 

  • Yuan X, He L, Yin K, Pan G, Harrison PJ (2011) Bacterial distribution and nutrient limitation in relation to different water masses in the coastal and northwestern South China Sea in late summer. Cont Shelf Res 31:1214–1223

    Article  Google Scholar 

  • Zhang W, Tang D, Yang B, Gao S, Sun J, Tao Z, Sun S, Ning X (2009) Onshore-offshore variations of copepod community in northern South China Sea. Hydrobiologia 636:257–269

    Article  Google Scholar 

  • Zheng Z, Li S, Xu Z (eds) (1984) Marine planktology. Ocean Press, Beijing

    Google Scholar 

  • Zhou M, Tande K, Zhu YW, Basedow S (2009) Productivity, trophic levels and size spectra of zooplankton in northern Norwegian shelf regions. Deep-Sea Res II 56(21–22):1934–1944

    Article  Google Scholar 

  • Zhou W, Long A, Jiang T, Chen S, Huang L, Huang H, Cai C, Yan Y (2011a) Bacterioplankton dynamics along the gradient from highly eutrophic Pearl River Estuary to oligotrophic northern South China Sea in wet season: implication for anthropogenic inputs. Mar Pollut Bull 62(4):726–733

    Article  Google Scholar 

  • Zhou L, Tan Y, Huang L, Huang J, Liu H, Lian X (2011b) Phytoplankton growth and microzooplankton grazing in the continental shelf area of northeastern South China Sea after Typhoon Fengshen. Cont Shelf Res 31:1663–1671. doi:10.1016/j.csr.2011.06.017

    Article  Google Scholar 

Download references

Acknowledgments

We thank Dr. Weiwen Wang for providing surface current data out of the Pearl River estuary, Dr. Qiang Lin for English editing, and Prof. Feng Guo from Xiamen University for discussing the data processing methods. This work is supported by the National Natural Science Foundation of China (Grant no. 41130855; 41006066; 41276162), and the "Strategic Priority Research Program - Climate Change: Carbon Budget and Relevant Issues" of the Chinese Academy of Sciences (Grant no.XDA05030403).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yehui Tan.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Zhou, L., Tan, Y., Huang, L. et al. Size-based analysis for the state and heterogeneity of pelagic ecosystems in the northern South China Sea. J Oceanogr 69, 379–393 (2013). https://doi.org/10.1007/s10872-013-0180-x

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10872-013-0180-x

Keywords

Navigation