Skip to main content

Advertisement

Log in

A new climatology of the Okhotsk Sea derived from the FERHRI database

  • Original Article
  • Published:
Journal of Oceanography Aims and scope Submit manuscript

Abstract

This paper introduces a new hydrographic climatology of the Okhotsk Sea; this climatology was constructed from the Far Eastern Regional Hydrometeorological Research Institute (FERHRI) database. The FERHRI database has a volume of data three to five times larger than the data used in previous studies because unpublished Russian observation data have been included in the FERHRI database. After removing erroneous data from the database by pertinent quality control methods, the climatology for 1/4° × 1/4° grids is produced by applying objective analysis procedures. Features similar to those in previous studies are seen in the intermediate layers in the Okhotsk Sea, whereas our climatology provides values that fill in gaps in previous climatologies. It is obvious from the monthly climatologies that temperature and salinity distributions evolve in accordance with seasonal variations in the Eastern Sakhalin Current and inflow from the North Pacific. We also reconstructed climatologies for the winter mixed layer and dense shelf water from data obtained from the temperature minimum waters identified as the remnants of these two layers. Free access to the 1° × 1° versions of all climatologies constructed in this study is available through the website.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18

Similar content being viewed by others

References

  • Alfultis MA, Martin S (1987) Satellite passive microwave studies of the Sea of Okhotsk ice cover and its relation to oceanic processes. J Geophys Res 92:13013–13028

    Article  Google Scholar 

  • Barnes SL (1964) A technique for maximizing details in numerical weather map analysis. J Appl Meteorol 3:396–409

    Article  Google Scholar 

  • Boyer TP, Antonov JI, Garcia HE, Johnson DR, Locarnini RA, Mishonov AV, Pitcher MT, Baranova OK, Smolyar IV (2006) World Ocean Database 2005, Chapter 1: Introduction. In: Levitus S (ed) NODC Atlas NESDIS 60. US Government Printing Office, Washington, DC

    Google Scholar 

  • Boyer TP, Antonov JI, Baranova OK, Garcia HE, Johnson DR, Locarnini RA, Mishonov MA, O’Brien TD, Seidov D, Smolyar IV, Zweng MM (2009) World Ocean Database, 2009, Chapter 1: Introduction. In: Levitus S (ed) NOAA Atlas NESDIS 66. Printing Office, Washington, DC

    Google Scholar 

  • de Boyer Montegüt C, Madec G, Fischer AS, Lazar A, Iudicone D (2004) Mixed layer depth over the global ocean: an examination of profile data and a profile-based climatology. J Geophys Res 109:C12003. doi:10.1029/2004JC002378

    Article  Google Scholar 

  • Freeland HJ, Bychkov AS, Whitney F, Talyer C, Wong CS, Yurasov GI (1998) WOCE section P1W in the Sea of Okhotsk: 1. Oceanographic data description. J Geophys Res 103:15613–15623

    Article  Google Scholar 

  • Fukamachi Y, Mizuta G, Ohshima KI, Talley LD, Riser SC, Wakatsuchi M (2004) Transport and modification processes of dense shelf water revealed by long-term moorings off Sakhalin in the Sea of Okhotsk. J Geophys Res 109:C09S10. doi:10.1029/2003JC001906

  • Gladyshev S, Martin S, Riser S, Figurkin A (2000) Dense water production on the northern Okhotsk shelves: comparison of ship-based spring–summer observations for 1996 and 1997 with satellite observations. J Geophys Res 105:26281–26299

    Article  Google Scholar 

  • Gladyshev S, Talley L, Kanatakov G, Khen G, Wakatsuchi M (2003) Distribution, formation, and seasonal variability of Okhotsk Sea Mode Water. J Geophys Res 108:3186. doi:10.1029/2001JC000877

    Article  Google Scholar 

  • Itoh M (2007) Warming of Intermediate Water in the Sea of Okhotsk since the 1950s. J Oceanogr 63:637–641

    Article  Google Scholar 

  • Itoh M, Ohshima KI, Wakatsuchi M (2003) Distribution and formation of Okhotsk Sea Intermediate Water: an analysis of isopycnal climatology data. J Geophys Res 108:3257. doi:10.1029/2002JC001350

    Article  Google Scholar 

  • Katsumata K, Yasuda I (2010) Estimates of non-tidal exchange transport between the Sea of Okhotsk and the North Pacific. J Oceanogr 66:489–504

    Article  Google Scholar 

  • Kitani K (1973) An oceanographic study of the Sea of Okhotsk, particularly in regard to cold waters. Bull Far Seas Fish Res Lab 9:45–77

    Google Scholar 

  • Kowalik Z, Polyakov I (1998) Tide in the Sea of Okhotsk. J Phys Oceanogr 28:1389–1409

    Article  Google Scholar 

  • Locarnini RA, Mishonov AV, Antonov JI, Boyer TP, Garcia HE, Baranova HE, Zweng MM, Johnson DR (2010) World Ocean Atlas 2009, vol 1: Temperature. In: Levitus S (ed) NOAA Atlas NESDIS 68. US Government Printing Office, Washington, DC

    Google Scholar 

  • Lozier S, Owens WB, Curry RG (1995) The climatology of the North Atlantic. Prog Oceanogr 36:1–44

    Article  Google Scholar 

  • Martin S, Drucker R, Yamashita K (1998) The production of ice and dense shelf water in the Okhotsk Sea polynyas. J Geophys Res 103:27771–27782

    Article  Google Scholar 

  • Miura T, Suga T, Hanawa K (2002) Winter mixed layer and formation of dichothermal water in the Bering Sea. J Oceanogr 58:815–823

    Article  Google Scholar 

  • Mizuta G, Fukamachi Y, Ohshima KI, Wakatsuchi M (2003) Structure and seasonal variability of the East Sakhalin Current. J Phys Oceanogr 33:2430–2445

    Article  Google Scholar 

  • Nakamura T, Awaji T (2004) Tidally induced diapycnal mixing in the Kuril Straits and its role in water transformation and transport: a three-dimensional nonhydrostatic model experiment. J Geophys Res 109:C09S07. doi:10.1029/2003JC001850

  • Nakanowatari T, Ohshima KI, Wakatsuchi M (2007) Warming and oxygen decrease of intermediate water in the northwestern North Pacific, originating from the Sea of Okhotsk, 1955–2004. Geophys Res Lett 34:L04602. doi:10.1029/2006GL028243

    Article  Google Scholar 

  • Nakatsuka T, Yoshikawa C, Toda M, Kawamura K, Wakatsuchi M (2002) An extremely turbid intermediate water in the Sea of Okhotsk: implication for the transport of particulate organic matter in a seasonally ice-bound sea. Geophys Res Lett 29:1757. doi:10.1029/2001GL014029

    Article  Google Scholar 

  • Nishioka J, Ono T, Saito H, Nakatsuka T, Takeda S, Yoshimura T, Suzuki K, Kuma K, Nakabayashi S, Tsumune D, Mitsudera H, Johnson WK, Tsuda A (2007) Iron supply to the western subarctic Pacific: importance of iron export from the Sea of Okhotsk. J Geophys Res 112:C10012. doi:10.1029/2006JC004055

    Article  Google Scholar 

  • Ohshima KI, Mizuta G, Itoh M, Fukamachi Y, Watanabe T, Nabae Y, Suehiro O, Wakatsuchi M (2001) Winter oceanographic conditions in the southwestern part of the Okhotsk Sea and their relation to sea ice. J Oceanogr 57:451–460

    Article  Google Scholar 

  • Ohshima KI, Wakatsuchi M, Fukamachi Y, Mizuta G (2002) Near-surface circulation and tidal currents of the Okhotsk Sea observed with satellite-tracked drifters. J Geophys Res 107:3195. doi:10.1029/2001JC001005

    Article  Google Scholar 

  • Ohshima KI, Simizu D, Itoh M, Mizuta G, Fukamachi Y, Riser SC, Wakatsuchi M (2004) Sverdrup balance and the cyclonic gyre in the Sea of Okhotsk. J Phys Oceanogr 34:513–525

    Article  Google Scholar 

  • Ohshima KI, Fukamachi Y, Mutoh M, Wakatsuchi M (2005) A generation mechanism for mesoscale eddies in the Kuril Basin of the Okhotsk Sea: baroclinic instability caused by the enhanced tidal mixing. J Oceanogr 61:247–260

    Article  Google Scholar 

  • Ohshima KI, Ono J, Simizu D (2008) Particle tracking experiments for drifting materials on a model of the Sea of Okhotsk. Bull Coast Oceanogr 45:115–124

    Google Scholar 

  • Ohshima KI, Nakanowatari T, Riser S, Wakatsuchi M (2010) Seasonal variation in the in- and outflow of the Okhotsk Sea with the North Pacific. Deep Sea Res II 57:1247–1256

    Article  Google Scholar 

  • Oka E, Talley LD, Suga T (2007) Temporal variability of winter mixed layer in the mid- to high-latitude North Pacific. J Oceanogr 63:293–307

    Article  Google Scholar 

  • Press WH, Teukolsky SA, Vetterling WT, Flannery BP (1992) Numerical recipes in Fortran 77: the art of scientific computing, 2nd edn. Cambridge University Press, New York

    Google Scholar 

  • Ramsey PH, Ramsey PP (2007) Optimal trimming and outlier elimination. J Mod Appl Stat Methods 6:355–360

    Google Scholar 

  • Reid JL (1965) Intermediate water of the Pacific Ocean. Johns Hopkins University Press, Baltimore

    Google Scholar 

  • Shcherbina AY, Talley LD, Rudnick DL (2004a) Dense water formation on the northwestern shelf of the Okhotsk Sea: I. Direct observations of brine rejection. J Geophys Res 109:C09S08. doi:10.1029/2003JC002196

  • Shcherbina AY, Talley LD, Rudnick DL (2004b) Dense water formation on the northwestern shelf of the Okhotsk Sea: II. Quantifying the transports. J Geophys Res 109:C09S09. doi:10.1029/2003JC002197

  • Simizu D, Ohshima KI (2006) A model simulation on the circulation in the Sea of Okhotsk and the East Sakhalin Current. J Geophys Res 111:C05016. doi:10.1029/2005JC002980

    Article  Google Scholar 

  • Smith WHF, Wessel P (1990) Gridding with continuous curvature splines in tension. Geophysics 55:293–305

    Article  Google Scholar 

  • Spencer PL, Askelson MA, Doswell CA III (2007) Choosing the smoothing parameters within a multiple-pass Barnes objective analysis scheme: a cautionary note. Mon Weather Rev 24:713–726

    Google Scholar 

  • Stigler SM (1977) Do robust estimators work with real data? Ann Stat 5:1055–1098

    Article  Google Scholar 

  • Sugiura K, Tsunogai S (2005) Spatial and temporal variation of surface xCO2 providing net biological productivities in the western North Pacific in June. J Oceanogr 61:435–445

    Article  Google Scholar 

  • Sverdrup HU, Johnson MW, Fleming RH (1942) The oceans: their physics. Chemistry and general biology. Prentice-Hall, Englewood Cliffs

    Google Scholar 

  • Tachibana Y, Oshima K, Ogi M (2008) Seasonal and interannual variations of Amur River discharge and their relationships to large-scale atmospheric patterns and moisture fluxes. J Geophys Res 113:D16102. doi:10.1029/2007JD009555

    Article  Google Scholar 

  • Takahashi T, Sutherland SC, Sweeney C, Poisson A, Metzl N, Tillbrook B, Bates N, Wanninkhof R, Feely RA, Sabine C, Olafsson J, Nojiri Y (2002) Global sea-air CO2 flux based on climatological surface ocean pCO2, and seasonal biological and temperature effects. Deep Sea Res II 49:1601–1622

    Article  Google Scholar 

  • Takizawa T (1982) Characteristics of the Soya Warm Current in the Okhotsk Sea. J Oceanogr Soc Jpn 38:281–292

    Article  Google Scholar 

  • Talley LD (1991) An Okhotsk water anomaly: implications for ventilation in the North Pacific. Deep Sea Res 38:S171–S190

    Article  Google Scholar 

  • Wakatsuchi M, Martin S (1990) Satellite observations of the ice cover of the Kuril Basin region of the Okhotsk Sea and its relation to the regional oceanography. J Geophys Res 95:13393–13410

    Article  Google Scholar 

  • Warner MJ, Bullister JL, Wisegraver DP, Gammon RH, Weiss RF (1996) Basin-wide distributions of chlorofluorocarbons CFC-11 and CFC-12 in the North Pacific. J Geophys Res 101:20525–20542

    Article  Google Scholar 

  • Watanabe T, Wakatsuchi M (1998) Formation of 26.8–26.9 σ θ water in the Kuril Basin of the Sea of Okhotsk as a possible origin of North Pacific Intermediate Water. J Geophys Res 103:2849–2865

    Article  Google Scholar 

  • White WB (1995) Design of a global observing system for gyre-scale upper ocean temperature variability. Prog Oceanogr 36:169–217

    Article  Google Scholar 

  • Wong CS, Matear RJ, Freeland HJ, Whitney FA, Bychkov AS (1998) WOCE line PIW in the Sea of Okhotsk 2. CFCs and the formation rate of intermediate water. J Geophys Res 103:15625–15642

    Article  Google Scholar 

  • Yamamoto M, Watanabe S, Tsunogai S, Wakatsuchi M (2002) Effect of sea ice formation and diapycnal mixing on the Okhotsk Sea Intermediate Water clarified with oxygen isotopes. Deep Sea Res 49:1165–1174

    Article  Google Scholar 

  • Yasuda I (1997) The origin of the North Pacific Intermediate Water. J Geophys Res 102:893–909

    Article  Google Scholar 

  • Zhabin IA, Abrosimova AA, Dubina VA, Nekrasov DA (2010) Influence of the Amur River runoff on the hydrological conditions of the Amur Liman and Sakhalin Bay (Sea of Okhotsk) during the spring–summer flood. Russ Meteorol Hydrol 35:295–300

    Article  Google Scholar 

Download references

Acknowledgments

The authors gratefully acknowledge valuable discussions on several points in this study with members of the Ocean and Sea Ice Dynamics Group, Atmosphere–Ocean Interaction Research Group, and Pan-Okhotsk Research Center at Institute of Low Temperature Science, Hokkaido University. The comments of Prof. T. Hibiya and two anonymous reviewers were extremely helpful in the revisions of the manuscript. All figures are drawn by Generic Mapping Tool (GMT). NOAA OI SST v2 is provided by the NOAA/OAR/ESRL PSD, Boulder, CO, USA, from their website at http://www.esrl.noaa.gov/psd. This study is supported by New Energy and Industrial Technology Development (NEDO), Grant-in-Aid for Scientific Research on Innovative Areas, and JSPS KAKENHI Grant Number 24510004.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hiroki Uehara.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Uehara, H., Kruts, A.A., Volkov, Y.N. et al. A new climatology of the Okhotsk Sea derived from the FERHRI database. J Oceanogr 68, 869–886 (2012). https://doi.org/10.1007/s10872-012-0147-3

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10872-012-0147-3

Keywords

Navigation