Skip to main content

Advertisement

Log in

Quasi-decadal modulations of North Pacific Intermediate Water area in the cross section along the 137°E meridian: impact of the Aleutian Low activity

  • Original Article
  • Published:
Journal of Oceanography Aims and scope Submit manuscript

Abstract

Temporal variations of area of the North Pacific Intermediate Water (NPIW), in the repeat hydrographic section along 137°E meridian conducted by the Japan Meteorological Agency, are investigated using the de-trended variables from 1972 to 2008. Variations of NPIW area show a clear quasi-decadal (about 10 years) modulation and it is caused by the vertical displacement of isopycnal surfaces in the lower portion of NPIW around the northern boundary of its distribution (30–32°N): The downward (upward) movement of isopycnal surfaces in the lower portion of NPIW as a result of the first-mode baroclinic ocean response stretches (shrinks) the density layer equivalent of NPIW and causes strengthening (weakening) of westward flows associated with the Kuroshio Counter Current, and then it can induce an increase (decrease) of volume transport of NPIW from the east. Consequently, the NPIW northern boundary shifts northward (southward) and an increase (decrease) of the NPIW area is induced. Large-scale atmospheric forcing controlling the vertical displacements of isopycnal surfaces is explored using a wind-driven hindcast ocean model. The vertical displacements stem from the first-mode baroclinic ocean response to the two types of Aleutian Low (AL) activities: in particular, the meridional movement of the AL imparts more potential influence on them than the AL intensity variation does.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

References

  • Akima H (1970) A new method of interpolation and smooth curve fitting based on local procedures. J Assoc Comput Mach 17(4):589–602. doi:https://doi.org/10.1145/321607.321609

    Article  Google Scholar 

  • Antonov JI, Locarnini RA, Boyer TP, Mishonov AV, Garcia HE (2006) Salinity, vol 2. World ocean atlas 2005, NOAA atlas NESDIS 62, p 182

  • Barnston A, Livezey RE (1987) Classification, seasonality and persistence of low-frequency atmospheric circulation. Mon Weather Rev 115(6):1083–1126. doi:https://doi.org/10.1175/1520-0493(1987)115

    Article  Google Scholar 

  • Chelton DB, Schlax MG (1996) Global observations of oceanic Rossby waves. Science 272(5229):234–238. doi:https://doi.org/10.1126/science.272.5259.234

    Article  Google Scholar 

  • Chelton DB, Roland AD, Schlax MG (1998) Geographical variability of the first baroclinic Rossby radius of deformation. J Clim 28(3):433–460. doi:https://doi.org/10.1175/1520-0485(1998)028

    Google Scholar 

  • Ducet N, Le Traon PY, Reverdin G (2000) Global high-resolution mapping of ocean circulation from the combination of T/P and ERS-1/2. J Geophys Res 105(C8):19477–19498. doi:https://doi.org/10.1029/2000JC900063

    Article  Google Scholar 

  • Fu LL, Qiu B (2002) Low-frequency variability of the North Pacific Ocean: the roles of boundary- and wind-driven baroclinic Rossby waves. J Geophys Res 107:3220. doi:https://doi.org/10.1029/2001JC001131

    Google Scholar 

  • Ishi Y, Hanawa K (2005) Large-scale variabilities of wintertime wind stress curl field in the North Pacific and their relation to atmospheric teleconnection patterns. Geophys Res Lett 32:L10607. doi:https://doi.org/10.1029/2004GL022330

    Article  Google Scholar 

  • Kalnay E, Kanamitsu M, Kistler R et al (1996) The NCEP/NCAR 40-year reanalysis project. Bull Am Meteorolo Soc 77(3):437–471. doi:https://doi.org/10.1175/1520-0477(1996)077

    Article  Google Scholar 

  • Kouketsu S, Kaneko I, Kawano T, Uchida H, Doi T, Fukasawa M (2007) Changes of North Pacific Intermediate Water properties in the subtropical gyre. Geophys Res Lett 34:L02605. doi:https://doi.org/10.1029/2006GL028499

    Article  Google Scholar 

  • Levitus S (1982) Climatological atlas of the world ocean, NOAA prof paper no 13. US Govt Printing Office, Washington, DC, p 173

  • Locarnini RA, Mishonov AV, Antonov JI, Boyer TP, Garcia HE (2006) World ocean atlas 2005: temperature, vol 1. In: Levitus S (ed) NOAA atlas NESDIS 61. US Government Printing Office, Washington, DC, p 182

  • Masujima M, Yasuda I, Hirose Y, Watanabe T (2003) Transport of Oyashio water across the subarctic front into the mixed water region and formation of NPIW. J Oceanogr 59(6):855–869

    Article  Google Scholar 

  • Masuzawa J (1967) An oceanographic section from Japan to New Guinea at 137°E in January 1967. Oceanogr Mag 19(2):95–118

    Google Scholar 

  • Minobe S (1999) Resonance in bidecadal and pentadecadal climate oscillations over the North Pacific: role in climate regime shift. Geophys Res Lett 26. doi:https://doi.org/10.1029/1999GL900119

    Article  Google Scholar 

  • Nakano T, Kaneko I, Endoh M, Kamachi M (2005) Interannual and decadal variabilities of NPIW salinity minimum core observed along JMA’s hydrographic repeat sections. J Oceanogr 61(4):681–697

    Article  Google Scholar 

  • Nakano T, Kaneko I, Soga T, Tsujino H, Yasuda T, Ishizaki H, Kamachi M (2007) Mid-depth freshening in the North Pacific subtropical gyre observed along the JMA repeat and WOCE hydrographic sections. Geophys Res Lett 34:L23608. doi:https://doi.org/10.1029/2007GL031433

    Article  Google Scholar 

  • Ono T, Watanabe YW, Sasaki K (2000) Annual anthropogenic carbon transport into the North Pacific Intermediate Water through the Kuroshio/Oyashio interfrontal zone: an estimation from CFCs distribution. J Oceanogr 56(6):675–689

    Article  Google Scholar 

  • Overland JE, Adams JM, Bond NA (1999) Decadal variability of the Aleutian Low and its relation to high-latitude circulation. J Clim 12(5):1542–1548. doi:https://doi.org/10.1175/1520-0442(1999)012

    Article  Google Scholar 

  • Pierini S, Dijkstra HA (2009) Low-frequency variability of the Kuroshio Extension. Nonlinear Process Geophys 16(6):665–675. doi:https://doi.org/10.5194/npg-16-665-2009

    Article  Google Scholar 

  • Qiu B (2003) Kuroshio extension variability and forcing the Pacific decadal oscillation: responses and potential feedback. J Phys Oceanogr 33(12):2465–2482

    Article  Google Scholar 

  • Qiu B, Joyce TM (1992) Interannual variability in the mid- and low-latitude western North Pacific. J Phys Oceanogr 22(9):1062–1079. doi:https://doi.org/10.1175/1520-0485(1992)022

    Article  Google Scholar 

  • Reid JL Jr (1965) Intermediate waters of the Pacific Ocean. Johns Hopkins Oceanogr Stud 5:96

    Google Scholar 

  • Shimizu Y, Iwao T, Yasuda I, Ito SI, Watanabe T, Uehara K, Shikama N, Nakano T (2004) Formation process of North Pacific Intermediate Water revealed by profiling floats set to drift on 26.7 σθ isopycnal surface. J Oceanogr 60(2):453–462

    Article  Google Scholar 

  • Shuto K (1996) Interannual variations of water temperature and salinity along the 137°E meridian. J Oceanogr 52(5):575–595

    Article  Google Scholar 

  • Stammer D (1997) Steric and wind-induced changes in TOPEX/POSEIDON large-scale sea surface topography observations. J Geophys Res 102:C9. doi:https://doi.org/10.1029/97JC01475

    Article  Google Scholar 

  • Sugimoto S, Hanawa K (2009) Decadal and interdecadal variations of the Aleutian Low activity and their relation to atmospheric teleconnection patterns. J Meteorol Soc Jpn 87(4):601–614. doi:https://doi.org/10.2151/jmsj.87.601

    Article  Google Scholar 

  • Sugimoto S, Hanawa K, Narikiyo K, Fujimori M, Suga T (2010) Temporal variations of the Kuroshio transport and its relation to atmospheric variations. J Oceanogr 66(5):611–619

    Article  Google Scholar 

  • Sverdrup H, Johnson MW, Fleming RH (1942) The oceans, their physics, chemistry, and biology. Prentice-Hall, Englewood Cliffs, p 1087

  • Talley LD (1988) Potential vorticity distribution in the North Pacific. J Phys Oceanogr 18(1):89–106. doi:https://doi.org/10.1175/1520-0485(1988)018

    Article  Google Scholar 

  • Talley LD (1991) An Okhotsk Sea anomaly: implication for ventilation in the North Pacific. Deep Sea Res 38:S171–S190

    Article  Google Scholar 

  • Talley LD (1993) Distribution and formation of North Pacific Intermediate Water. J Phys Oceanogr 23(3):517–537. doi:https://doi.org/10.1175/1520-0485(1993)023

    Article  Google Scholar 

  • Talley LD (1997) North Pacific Intermediate Water transports in the mixed water region. J Phys Oceanogr 27(8):1795–1803. doi:https://doi.org/10.1175/1520-0485(1997)027

    Article  Google Scholar 

  • Talley LD (1999) Some aspects of ocean heat transport by the shallow, intermediate and deep overturning circulations. Mechanisms of global climate change at millennial time scales. Geophysical monograph 112. American Geophysical Union, pp 1–22

  • Trenberth KE, Hurrell JW (1994) Decadal atmosphere–ocean variations in the Pacific. Clim Dyn 9:303–319

    Article  Google Scholar 

  • Tsunogai S, Ono T, Watanabe S (1993) Increase in total carbonate in the western North Pacific water and hypothesis on the missing sink of anthropogenic carbon. J Oceanogr 49(3):305–315

    Article  Google Scholar 

  • Wong APS, Bindoff NL, Church JA (1999) Large-scale freshening of intermediate waters in the Pacific and Indian oceans. Nature 400(6743):440–443

    Article  Google Scholar 

  • Yasuda I (1997) The origin of the North Pacific Intermediate Water. J Geophys Res 102(C1):893–909. doi:https://doi.org/10.1029/96JC02938

    Article  Google Scholar 

  • Yasuda I (2004) North Pacific Intermediate Water: progress in SAGE (SubArctic Gyre Experiment) and related projects. J Oceanogr 60(2):385–395

    Article  Google Scholar 

  • Yasuda I, Okuda K, Shimizu Y (1996) Distribution and modification of the North Pacific Intermediate Water in the Kuroshio-Oyashio Interfrontal zone. J Phys Oceanogr 26(4):448–465. doi:https://doi.org/10.1175/1520-0485(1996)026

    Article  Google Scholar 

  • Yasuda I, Kouketsu S, Katsumata K, Ohiwa M, Kawasaki Y, Kusaka A (2002) Influence of intermediate Okhotsk Sea water on the Oyashio and North Pacific Intermediate water. J Geophys Res 107:3237. doi:https://doi.org/10.1029/2001JC001037

    Article  Google Scholar 

  • You Y, Suginohara N, Fukasawa M, Yasuda I, Kaneko I, Yoritaka H, Kawamiya M (2000) Roles of the Okhotsk Sea and Gulf of Alaska in forming the North Pacific Intermediate Water. J Geophys Res 105(C2):3253–3280. doi:https://doi.org/10.1029/1999JC900304

    Article  Google Scholar 

Download references

Acknowledgments

The authors wish to express their sincere thanks to the members of Physical Oceanography Group at Tohoku University for their useful discussion. The first author (SS) was partly supported by the Grant-in-Aid for Research Activity Start-up (no. 21840010) from the Japan Society for the Promotion of Science; Grant-in-Aid for Young Scientist (B) (no. 23740348) from the Japan Society for the Promotion of Science. The second author (KH) was financially supported by the Japan Fisheries Agency. Comments from two anonymous reviewers were particularly helpful for improving our paper.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Shusaku Sugimoto.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Sugimoto, S., Hanawa, K. Quasi-decadal modulations of North Pacific Intermediate Water area in the cross section along the 137°E meridian: impact of the Aleutian Low activity. J Oceanogr 67, 519–531 (2011). https://doi.org/10.1007/s10872-011-0054-z

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10872-011-0054-z

Keywords

Navigation