Skip to main content

Simulating present climate of the global ocean–ice system using the Meteorological Research Institute Community Ocean Model (MRI.COM): simulation characteristics and variability in the Pacific sector

Abstract

A long-term spin-up and a subsequent interannual simulation are conducted for the ocean–ice component of the climate model intercomparison project (CMIP)-class earth system model of the Japan Meteorological Agency/Meteorological Research Institute. This experiment has three purposes: first is to assess the ability of our model with the Coordinated Ocean–ice Reference Experiments (COREs) forcing in reproducing the present ocean-climate; second is to understand the ocean-climate variability for the past 60 years; third is to present an example of evaluating an ocean–ice interannual variability simulation. The Pacific Ocean is focused on for the last two purposes. After integrating for about 1500 years with repeated use of a detrended CORE interannual forcing, the model reaches a quasi-steady state where the present climate is reproduced satisfactorily. Then, the interannual variability simulation is conducted with the retrieved forcing trend and the result is analyzed. The simulation is successful at reproducing the long-term variability in the Pacific and surrounding oceans. Brief analyses of the tropical and mid-latitude upper layer, deep circulation, and the Arctic sea ice are presented. A caveat in treating other parts of the globe is due to the recent intense convection in the Southern Ocean caused by a remarkably increasing trend of the Southern Hemisphere westerly. Overall, the current simulation with our CMIP-class ocean–ice model is shown to be useful for studying the present ocean-climate variability, specifically in the Pacific sector. It could also be used as a benchmark control experiment that facilitates further research, model development, and intercomparison.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19
Fig. 20
Fig. 21
Fig. 22
Fig. 23
Fig. 24
Fig. 25

Notes

  1. Available at https://doi.org/data1.gfdl.noaa.gov/nomads/forms/mom4/COREv2.html.

  2. Available at https://doi.org/www.clivar.org/organization/wgomd/reos/metrics.php.

References

  • Adcroft A, Hill C, Marshall J (1997) Representation of topography by shaved cells in a height coordinate ocean model. Mon Weather Rev 125:2293–2315

    Article  Google Scholar 

  • Antonov JI, Levitus S, Boyer TP, Conkright ME, O’Brien TD, Stephens C (1998) World ocean atlas 1998, vol 1. Temperature of the Atlantic Ocean. NOAA atlas, NESDIS 27. US Government Printing Office, Washington, DC, pp 166

  • Arakawa A (1972) Design of the UCLA general circulation model. Numerical simulation weather and climate, technical report no 7. Department of Meteorology, University of California, Los Angeles, pp 116

  • Bond NA, Overland JE, Spillane M, Stabeno P (2003) Recent shifts in the state of the North Pacific. Geophys Res Lett 30:2183. doi:https://doi.org/10.1029/2003GL018597

    Article  Google Scholar 

  • Böning CW, Dispert A, Visbeck M, Rintoul SR, Schwarzkopf FU (2008) The response of the Antarctic Circumpolar Current to recent climate change. Nat Geosci 1:864–869

    Article  Google Scholar 

  • Boyer TP, Levitus S, Antonov JI, Conkright ME, O’Brien TD, Stephens C (1998) World ocean atlas 1998, vol 4. Salinity of the Atlantic Ocean. NOAA Atlas, NESDIS 30. US Government Printing Office, Washington, DC, pp 166

  • Bryan K (1984) Accelerating the convergence to equilibrium of ocean-climate models. J Phys Oceanogr 14:666–673

    Article  Google Scholar 

  • Carton JA, Grodsky SA, Liu H (2008) Variability of the oceanic mixed layer, 1960–2004. J Clim 21:1029–1047

    Article  Google Scholar 

  • Chhak KC, Di Lorenzo E, Schneider N, Cummins PF (2009) Forcing of low-frequency ocean variability in the Northeast Pacific. J Clim 22:1255–1276

    Article  Google Scholar 

  • Ceballos LI, Di Lorenzo E, Hoyos CD, Schneider N, Taguchi B (2009) North Pacific Gyre Oscillation synchronizes climate fluctuations in the eastern and western boundary systems. J Clim 22:5163–5174

    Article  Google Scholar 

  • Collecte Localisation Satellites (CLS) (2010) SSALTO/DUACS user handbook: (M)SLA and (M)ADT near-real time and delayed time products. Rep CLS-DOS-NT-06.304. Centre Nat d’Etud Spatiales, Toulouse, France, pp 44

  • Comiso JC, Parkinson CL, Gersten R, Stock L (2008) Accelerated decline in the Arctic sea ice cover. Geophys Res Lett 35:122. doi:https://doi.org/10.1029/2007GL031972

    Article  Google Scholar 

  • Cunningham SA, Alderson SG, King BA, Brandon MA (2003) Transport and variability of the Antarctic Circumpolar Current in Drake Passage. J Geophys Res 108:8084. doi:https://doi.org/10.1029/2001JC001147

    Article  Google Scholar 

  • Cunningham SA, Kanzow T, Rayner D, Baringer MO, Johns WE, Marotzke J, Longworth HR, Grant EM, Hirschi JJ-M, Beal LM, Meinen CS, Bryden HL (2007) Temporal variability of the Atlantic meridional overturning circulation at 26.5°N. Science 317:935-938. doi:https://doi.org/10.1126/science.1141304

    Article  Google Scholar 

  • Danabasoglu G (2004) A comparison of global ocean general circulation model solutions obtained with synchronous and accelerated integration methods. Ocean Model 7:323–341. doi:https://doi.org/10.1016/j.ocemod.2003.10.001

    Article  Google Scholar 

  • Deser C, Alexander MA, Timlin MS (1996) Upper-ocean thermal variations in the North Pacific during 1970–1991. J Clim 9:1840–1855

    Article  Google Scholar 

  • Di Lorenzo E, Schneider N, Cobb KM, Franks PJS, Chhak K, Miller AJ, McWilliams JC, Bograd SJ, Arango H, Curchitser E, Powell TM, Riviére P (2008) North Pacific Gyre Oscillation links ocean climate and ecosystem change. Geophys Res Lett 35:122. doi:https://doi.org/10.1029/2007GL032838

    Article  Google Scholar 

  • Doney SC, Hecht MW (2002) Antarctic bottom water formation and deep-layer chlorofluorocarbon distributions in a global ocean climate model. J Phys Oceanogr 32:1642–1666

    Article  Google Scholar 

  • ETOPO2v2 (2006) Global Gridded 2-minute Database. National Geophysical Data Center, National Oceanic and Atmospheric Administration, US Dept of Commerce. https://doi.org/www.ngdc.noaa.gov/mgg/global/etopo2.html

  • Environmental Working Group (EWG) (1997) Joint US-Russian atlas of the Arctic Ocean for the winter period. Natl Snow and Ice Data Cent, CD-ROM

  • Environmental Working Group (EWG) (1998) Joint US-Russian atlas of the Arctic Ocean for the summer period. Natl Snow and Ice Data Cent, CD-ROM

  • Farneti R, Delworth TL, Rosati AJ, Griffies SM, Zeng F (2010) The role of mesoscale eddies in the rectification of the Southern Ocean response to climate change. J Phys Oceanogr 40:1539–1557. doi:https://doi.org/10.1175/2010JPO4353.1

    Article  Google Scholar 

  • Feng M, McPhaden MJ, Lee T (2010) Decadal variability of the Pacific subtropical cells and their influence on the southeast Indian Ocean. Geophys Res Lett 37:L09606. doi:https://doi.org/10.1029/2010GL042796

    Google Scholar 

  • Fukasawa M, Freeland H, Perkin R, Watanabe T, Uchida H, Nishina A (2004) Bottom water warming in the North Pacific Ocean. Nature 427:825–827

    Article  Google Scholar 

  • Ganachaud A, Wunsch C (2000) Improved estimates of global ocean circulation, heat transport and mixing from hydrographic data. Nature 408:453–457

    Article  Google Scholar 

  • Ganachaud A (2003) Large-scale mass transports, water mass formation, and diffusivities estimated from World Ocean Circulation Experiment (WOCE) hydrographic data. J Geophys Res 108:3213. doi:https://doi.org/10.1029/2002JC001565

    Article  Google Scholar 

  • Gent PR, McWilliams JC (1990) Isopycnal mixing in ocean circulation models. J Phys Oceanogr 20:150–155

    Article  Google Scholar 

  • Gordon AL (2005) Oceanography of the Indonesian seas and their throughflow. Oceanography 18(4):14–27

    Article  Google Scholar 

  • Gordon AL, Sprintall J, Van Aken HM, Susanto D, Wijffels S, Molcard R, Ffield A, Pranowo W, Wirasontosa S (2010) The Indonesian throughflow during 2004–2006 as observed by the INSTANT program. Dyn Atmos Ocean 50:115–128. doi:https://doi.org/10.1016/j.dynatmoce.2009.12.002

    Article  Google Scholar 

  • Griffies SM, Biastoch A, Böning C, Bryan F, Danabasoglu G, Chassignet EP, England MH, Gerdes R, Haak H, Hallberg RW, Hazeleger W, Jungclaus J, Large WG, Madec G, Pirani A, Samuels BL, Scheinert M, Sen Gupta A, Severijns CA, Simmons HL, Treguier AM, Winton M, Yeager S, Yin J (2009) Coordinated ocean–ice reference experiments (COREs). Ocean Model 26:1–46. doi:https://doi.org/10.1016/j.ocemod.2008.08.007

    Article  Google Scholar 

  • Gu D, Philander SGH (1997) Interdecadal climate fluctuations that depend on exchanges between the tropics and extratropics. Science 275:805–807

    Article  Google Scholar 

  • Hasumi H (2006) CCSR Ocean Component Model (COCO) version 4.0. CCSR report no 25. Center for Climate System Research, University of Tokyo, Tokyo, pp 103

  • Hellerman S, Rosenstein M (1983) Normal monthly wind stress over the World Ocean with error estimates. J Phys Oceanogr 13:1093–1104

    Article  Google Scholar 

  • Hofmann M, Morales Maqueda MA (2006) Performance of a second-order moments advection scheme in an Ocean General Circulation Model. J Geophys Res 111:C05006. doi:https://doi.org/10.1029/2005JC003279

    Article  Google Scholar 

  • Huffman G, Adler R, Arkin P, Chang A, Ferraro R, Gruber R, Janowiak J, McNab A, Rudolf B, Schneider U (1997) The global precipitation climatology project (GPCP) combined precipitation data set. Bull Am Meteor Soc 78:5–20

    Article  Google Scholar 

  • Hunke EC, Dukowicz JK (2002) The elastic-viscous-plastic sea ice dynamics model in general orthogonal curvilinear coordinates on a sphere - incorporation of metric terms. Mon Weather Rev 130:1848–1865

    Article  Google Scholar 

  • Hunke EC, Lipscomb WH (2010) CICE: the Los Alamos Sea Ice Model documentation and software user’s manual, pp 76 (Available at https://doi.org/oceans11.lanl.gov/trac/CICE/)

  • Ishi Y, Hanawa K (2005) Large-scale variabilities of wintertime wind stress curl field in the North Pacific and their relation to atmospheric teleconnection patterns. Geophys Res Lett 32:L10607. doi:https://doi.org/10.1029/2004GL022330

    Article  Google Scholar 

  • Ishii M, Shouji A, Sugimoto S, Matsumoto T (2005) Objective analyses of sea-surface temperature and marine meteorological variables for the 20th century using ICOADS and the Kobe Collection. Int J Climatol 25:865–879

    Article  Google Scholar 

  • Ishii M, Kimoto M (2009) Reevaluation of historical ocean heat content variations with time-varying XBT and MBT depth bias corrections. J Oceanogr 65:287–299

    Article  Google Scholar 

  • Ishizaki H, Motoi T (1999) Reevaluation of the Takano-Onishi scheme for momentum advection on bottom relief in ocean models. J Atmos Ocean Technol 16:1994–2010

    Article  Google Scholar 

  • Iwasaki S, Matsuura T, Watabe I (2002) The relation between the trend of sea level excluding the effect of crustal movements and sea surface temperature around Honshu. Umi-no-kenkyu 11:529–542 (in Japanese with English abstract)

    Google Scholar 

  • Jerlov NG (1976) Marine optics. Elsevier, Amsterdam, pp 231

  • Jin F-F (1997a) An equatorial ocean recharge paradigm for ENSO. Part I: conceptual model. J Atmos Sci 54:811–829

    Article  Google Scholar 

  • Jin F-F (1997b) An equatorial ocean recharge paradigm for ENSO. Part II: a stripped-down coupled model. J Atmos Sci 54:830–847

    Article  Google Scholar 

  • Killworth PD, Webb DJ, Stainforth D, Paterson SM (1991) The development of a free-surface Bryan–Cox–Semtner ocean model. J Phys Oceanogr 21:1333–1348

    Article  Google Scholar 

  • Kleeman R, McCreary JP, Klinger BA (1999) A mechanism for generating ENSO decadal variability. Geophys Res Lett 26:1743–1746

    Article  Google Scholar 

  • Kubokawa A, Inui T (1999) Subtropical countercurrent in an idealized ocean GCM. J Phys Oceanogr 29:1303–1313

    Article  Google Scholar 

  • Kwon Y-O, Alexander MA, Bond NA, Frankignoul C, Nakamura H, Qiu B, Thompson LA (2010) Role of the Gulf Stream and Kuroshio-Oyashio systems in large-scale atmosphere–ocean interaction: a review. J Clim 23:3249–3281. doi:https://doi.org/10.1175/2010JCLI3343.1

    Article  Google Scholar 

  • Large WG, Danabasoglu G, McWilliams JC, Gent PR, Bryan FO (2001) Equatorial circulation of a global ocean climate model with anisotropic horizontal viscosity. J Phys Oceanogr 31:518–536

    Article  Google Scholar 

  • Large WG, Yeager SG (2004) Diurnal to decadal global forcing for ocean and sea-ice models: the data sets and flux climatologies. NCAR technical note: NCAR/TN-460+STR. CGD Division of the National Center for Atmospheric Research, Boulder, pp 105

  • Large WG, Yeager SG (2009) The global climatology of an interannually varying air sea flux data set. Climate Dyn 33:341–364. doi:https://doi.org/10.1007/s00382-008-0441-3

    Article  Google Scholar 

  • Lau K-M, Weng H (1999) Interannual, decadal-interdecadal, and global warming signals in sea surface temperature during 1955–97. J Clim 12:1257–1267

    Article  Google Scholar 

  • Linkin ME, Nigam S (2008) The North Pacific Oscillation–West Pacific teleconnection pattern: mature-phase structure and winter impacts. J Clim 21:1979–1997

    Article  Google Scholar 

  • Manabe S, Stouffer RJ (1988) Two stable equilibria of a coupled ocean–atmosphere model. J Clim 1:841–866

    Article  Google Scholar 

  • Mantua NJ, Hare SR, Zhang Y, Wallace JM, Francis RC (1997) A Pacific interdecadal climate oscillation with impacts on salmon production. Bull Am Meteor Soc 78:1069–1079

    Article  Google Scholar 

  • Marshall JC, Williams RG, Nurser AJG (1993) Inferring the subduction rate and period over the North Atlantic. J Phys Oceanogr 23:1315–1329

    Article  Google Scholar 

  • Masuda S, Awaji T, Sugiura N, Matthews JP, Toyoda T, Kawai Y, Doi T, Kouketsu S, Igarashi H, Katsumata K, Uchida H, Kawano T, Fukasawa M (2010) Simulated rapid warming of abyssal North Pacific Waters. Science 329:319–322. doi:https://doi.org/10.1126/science.1188703

    Article  Google Scholar 

  • Mauritzen C (1996) Production of dense overflow waters feeding the North Atlantic across the Greenland-Scotland Ridge. Part 1: evidence for a revised circulation scheme. Deep Sea Res I 43:769–806

    Article  Google Scholar 

  • McPhaden MJ, Zhang D (2002) Slowdown of the meridional overturning circulation in the upper Pacific Ocean. Nature 415:603–608

    Article  Google Scholar 

  • McPhaden MJ, Zhang D (2004) Pacific Ocean circulation rebounds. Geophys Res Lett 31:L18301. doi:https://doi.org/10.1029/2004GL020727

    Article  Google Scholar 

  • Mellor G, Kantha L (1989) An ice-ocean coupled model. J Geophys Res 94:10937–10954

    Article  Google Scholar 

  • Miller AJ, Cayan DR, Barnett TP, Graham NE, Oberhuber JM (1994) Interdecadal variability of the Pacific Ocean: model response to observed heat flux and wind stress anomalies. Clim Dyn 9:287–302

    Article  Google Scholar 

  • Murray RJ (1996) Explicit generation of orthogonal grids for ocean models. J Comput Phys 126:251–273

    Article  Google Scholar 

  • Nakamura T, Toyoda T, Awaji T, Ishikawa Y (2004) Tidal mixing in the Kuril Straits and its impact on ventilation in the North Pacific Ocean. J Oceanogr 60:411–423

    Article  Google Scholar 

  • Nakano H, Suginohara N (2002) Effects of bottom boundary layer parameterization on reproducing deep and bottom waters in a world ocean model. J Phys Oceanogr 32:1209–1227

    Article  Google Scholar 

  • Nakano H, Hirabara M, Tsujino H, Motoi T (2008) Development of a global ocean model with the resolution of 1° × 1/2° and 1/8° × 1/12°. CLIVAR Exchanges 13(1):11–12

    Google Scholar 

  • Nakano H, Tsujino H, Hirabara M, Yasuda T, Motoi T, Ishii M, Yamanaka G (2011) Uptake mechanism of anthropogenic CO2 in the Kuroshio Extension region in an Ocean General Circulation Model. J Oceanogr (submitted)

  • Niiler PP, Maximenko NA, Panteleev GG, Yamagata T, Olson DB (2003) Near-surface dynamical structure of the Kuroshio Extension. J Geophys Res 108:3193. doi:https://doi.org/10.1029/2002JC001461

    Article  Google Scholar 

  • Noh Y, Kim H-J (1999) Simulations of temperature and turbulence structure of the oceanic boundary layer with the improved near-surface process. J Geophys Res 104:15621–15634

    Article  Google Scholar 

  • Nonaka M, Nakamura H, Tanimoto Y, Kagimoto T, Sasaki H (2006) Decadal variability in the Kuroshio–Oyashio Extension simulated in an eddy-resolving OGCM. J Clim 19:1970–1989

    Article  Google Scholar 

  • Nonaka M, Xie S-P, McCreary JP (2002) Decadal variations in the subtropical cells and equatorial Pacific SST. Geophys Res Lett 29:1116. doi:https://doi.org/10.1029/2001GL013717

    Article  Google Scholar 

  • Prather MJ (1986) Numerical advection by conservation of second-order moments. J Geophys Res 91:6671–6681

    Article  Google Scholar 

  • Qiu B (2003) Kuroshio extension variability and forcing of the Pacific decadal oscillations: responses and potential feedback. J Phys Oceanogr 33:2465–2482

    Article  Google Scholar 

  • Qu T, Chen J (2009) A North Pacific decadal variability in subduction rate. Geophys Res Lett 36:L22602. doi:https://doi.org/10.1029/2009GL040914

    Article  Google Scholar 

  • Rayner NA, Parker DE, Horton EB, Folland CK, Alexander LV, Rowell DP, Kent EC, Kaplan A (2003) Global analyses of sea surface temperature, sea ice, and night marine air temperature since the late nineteenth century. J Geophys Res 108:4407. doi:https://doi.org/10.1029/2002JD002670

    Article  Google Scholar 

  • Redi MH (1982) Oceanic isopycnal mixing by coordinate rotation. J Phys Oceanogr 12:1154–1158

    Article  Google Scholar 

  • Röske F (2006) Global oceanic heat and fresh water forcing dataset for ocean models. Ocean Model 11:235–297

    Article  Google Scholar 

  • Schneider N, Cornuelle BD (2005) The forcing of the Pacific decadal oscillation. J Clim 18:4355–4373

    Article  Google Scholar 

  • Serreze M, Hurst C (2000) Representation of mean Arctic precipitation from NCEP-NCAR and ERA reanalyises. J Clim 13:182–201

    Article  Google Scholar 

  • Senjyu T, Matsuyama M, Matsubara N (1999) Interannual and decadal sea-level variations along the Japanese coast. J Oceanogr 55:619–633

    Article  Google Scholar 

  • Smagorinsky J (1963) General circulation experiments with the primitive equations. I. The basic experiment. Mon Weather Rev 91:99–164

    Article  Google Scholar 

  • Smith RD, Maltrud ME, Bryan FO, Hecht MW (2000) Numerical simulation of the North Atlantic Ocean at 1/10°. J Phys Oceanogr 30:1532–1561

    Article  Google Scholar 

  • Smith RD, McWilliams JC (2003) Anisotropic horizontal viscosity for ocean models. Ocean Model 5:129–156

    Article  Google Scholar 

  • Smolarkiewicz PK (1984) A fully multidimensional positive definite advection transport algorism with small implicit diffusion. J Comput Phys 54:325–362

    Article  Google Scholar 

  • Steele M, Morley R, Ermold W (2001) PHC: A global ocean hydrography with a high-quality Arctic Ocean. J Clim 14:2079–2087

    Article  Google Scholar 

  • St Laurent LC, Simmons HL, Jayne SR (2002) Estimating tidally driven mixing in the deep ocean. Geophys Res Lett 29:2106–2110. doi:https://doi.org/10.1029/2002GL015633

    Article  Google Scholar 

  • Taguchi B, Xie S-P, Schneider N, Nonaka M, Sasaki H, Sasai Y (2007) Decadal variability of the Kuroshio extension: observations and an eddy-resolving model hindcast. J Clim 20:2357–2377

    Article  Google Scholar 

  • Takikawa T, Yoon J-H, Chao K-D (2005) The Tsushima warm current through Tsushima Straits estimated from ferryboat ADCP data. J Phys Oceanogr 35:1154–1168

    Article  Google Scholar 

  • Tatebe H, Hasumi H (2010) Formation mechanism of the Pacific equatorial thermocline revealed by a general circulation model with a high accuracy tracer advection scheme. Ocean Model 35:245–252. doi:https://doi.org/10.1016/j.ocemod.2010.07.011

    Article  Google Scholar 

  • Trenberth KE, Caron JM (2001) Estimates of meridional atmosphere and ocean heat transports. J Clim 14:3433–3443

    Article  Google Scholar 

  • Tsujino H, Hasumi H, Suginohara N (2000) Deep pacific circulation controlled by vertical diffusivity at the lower thermocline depths. J Phys Oceanogr 30:2853–2865

    Article  Google Scholar 

  • Tsujino H, Motoi T, Ishikawa I, Hirabara M, Nakano H, Yamanaka G, Yasuda T, Ishizaki H (2010) Reference manual for the Meteorological Research Institute Community Ocean Model (MRI.COM) version 3. Technical reports of the Meteorological Research Institute, no 59. MRI, Tsukuba, pp 241

  • Walker G, Bliss E (1932) World weather V. Mem R Meteor Soc 4:53–84

    Google Scholar 

  • Wang J, Zhang J, Watanabe E, Ikeda M, Mizohata K, Walsh JE, Bai X, Wu B (2009) Is the Dipole Anomaly a major driver to record lows in Arctic summer sea ice extent? Geophys Res Lett 36:L05706. doi:https://doi.org/10.1029/2008GL036706

    Google Scholar 

  • Xie P, Arkin PA (1996) Analysis of global monthly precipitation using gauge observations, satellite estimates, and numerical model predictions. J Clim 9:840–858

    Article  Google Scholar 

  • Xie S-P, Kunitani T, Kubokawa A, Nonaka M, Hosoda S (2000) Interdecadal thermocline variability in the North Pacific for 1958–97: a GCM simulation. J Phys Oceanogr 30:2798–2813

    Article  Google Scholar 

  • Yamanaka G (2008) Discrepancies between observed and ocean general circulation model-simulated anomalies in recent SSTs of the tropical Indian Ocean caused by apparent trends in atmospheric reanalysis data. Geophys Res Lett 35:L18603. doi:https://doi.org/10.1029/2008GL034737

    Article  Google Scholar 

  • Yamanaka G, Ishizaki H, Hirabara M, Ishikawa I (2008) Decadal variability of the Subtropical Front of the western North Pacific in an eddy-resolving ocean general circulation model. J Geophys Res 113:C12027. doi:https://doi.org/10.1029/2008JC005002

    Article  Google Scholar 

  • Yang D (1999) An improved precipitation climatology for the Arctic Ocean. Geophys Res Lett 26:1625-1628

    Article  Google Scholar 

  • Yasuda T, Sakurai K (2006) Interdecadal variability of the sea surface height around Japan. Geophys Res Lett 33: L01605. doi:https://doi.org/10.1029/2005GL024920

    Google Scholar 

  • Yukimoto S, Yoshimura H, Hosaka M, Sakami T, Tsujino H, Hirabara M, Tanaka TY, Deushi M, Obata A, Nakano H, Adachi Y, Shindo E, Yabu S, Ose T, Kitoh A (2011) Development of the Meteorological Research Institute-Earth System Model (MRI-ESM1)—model description. Technical reports of the Meteorological Research Institute, no 64. MRI, Tsukuba, pp 88

  • Zhang J, Lindsay R, Steele M, Schweiger A (2008) What drove the dramatic retreat of arctic sea ice during summer 2007? Geophys Res Lett 35:L11505. doi:https://doi.org/10.1029/2008GL034005

    Article  Google Scholar 

  • Zhang Y, Rossow WB, Lacis AA, Oinas V, Mishchenko MI (2004) Calculation of radiative fluxes from the surface to top of atmosphere based on ISCCP and other global data sets: refinements of the radiative transfer model and the input data. J Geophys Res 109: D19105. doi:https://doi.org/10.1029/2003JD004457

    Article  Google Scholar 

Download references

Acknowledgments

Authors are grateful to Hiroshi Ishizaki, Yoshiteru Kitamura, and Ichiro Ishikawa, who initiated the development of MRI.COM as a multipurpose ocean model. Discussions about various issues of ocean modeling with Hiroyasu Hasumi at the AORI of the University of Tokyo, Yoshiki Komuro and Tatsuo Suzuki at JAMSTEC were very helpful. Comments from Seiji Yukimoto and Yukimasa Adachi in the Climate Research Department of MRI during the course of developing MRI-ESM1 greatly helped improve the model and its performance. Constructive and encouraging comments from anonymous reviewers are gratefully acknowledged. This work is funded by MRI and is partly supported by Japan Society for the Promotion of Science (JSPS) through Grant-in-Aid for Scientific Research (B) 21340133 and (C) 22540455.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hiroyuki Tsujino.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Tsujino, H., Hirabara, M., Nakano, H. et al. Simulating present climate of the global ocean–ice system using the Meteorological Research Institute Community Ocean Model (MRI.COM): simulation characteristics and variability in the Pacific sector. J Oceanogr 67, 449–479 (2011). https://doi.org/10.1007/s10872-011-0050-3

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10872-011-0050-3

Keywords

  • OGCM
  • COREs
  • Pacific Ocean