Skip to main content

Temporal variations of the net Kuroshio transport and its relation to atmospheric variations

Abstract

Temporal variations of the net Kuroshio transport are investigated using long-term hydrographic data from repeat section of the 137°E meridian from the south of Japan (34°N) to New Guinea (1°S) conducted by the Japan Meteorological Agency. In this study, boundaries of the Kuroshio and the Kuroshio Counter Current (KCC) are defined based on the sea surface dynamic height distribution. Westward flows associated with the KCC and cold-core eddy north of the Kuroshio are removed from the eastward flow associated with the Kuroshio in order to estimate the net Kuroshio transport strictly. The net Kuroshio transport reveals low-frequency variations: significant signals on a decadal (about 10-year) timescale. The variations of net Kuroshio transport are predominantly caused by changes in the magnitude of oceanic current speed fields associated with a vertical movement of the main pycnocline depth around the southern boundary of the Kuroshio: deepening of the main pycnocline around the southern boundary of the Kuroshio forms a sharp northern upward-tilting slope of the isopycnal surfaces at the Kuroshio region, and eventually the net Kuroshio transport increases together with the Kuroshio eastward transport. By using a wind-driven hindcast model, it is found that the main pycnocline depth variation results from the first-mode baroclinic Rossby waves attributable to two types of Aleutian Low (AL) changes: a change in the magnitude of AL and meridional movement of AL.

This is a preview of subscription content, access via your institution.

References

  • Akima, H. (1970): A new method of interpolation and smooth curve fitting based on local procedures. J. Assoc. Comput. Math., 17, 589–602.

    Google Scholar 

  • Akitomo, K., M. Ooi, T. Awaji and K. Kutsuwada (1996): Interannual variability of the Kuroshio transport in response to the wind stress field over the North Pacific: Its relation to the path variation south of Japan. J. Geophys. Res., 101, 14,057–14,071.

    Article  Google Scholar 

  • Barnston, A. G. and R. E. Livezey (1987): Classification, seasonality and persistence of low-frequency atmospheric circulation pattern. Mon. Wea. Rev., 115, 1083–1126.

    Article  Google Scholar 

  • Davis, R. (1976): Predictability of sea surface temperature and sea level pressure anomalies over the North Pacific Ocean. J. Phys. Oceanogr., 6, 249–266.

    Article  Google Scholar 

  • Deser, C., M. A. Alexander and M. S. Timlin (1999): Evidence for a wind-driven intensification of the Kuroshio Current Extension from the 1970s to the 1980s. J. Climate, 12, 1697–1706.

    Article  Google Scholar 

  • Ducet, N., P. Y. Le Traon and G. Reverdin (2000): Global highresolution mapping of ocean circulation from the combination of T/P and ERS-1/2. J. Geophys. Res., 105, 19477–19498.

    Article  Google Scholar 

  • Fu, L. L. and B. Qiu (2002): Low-frequency variability of the North Pacific Ocean: The roles of boundary- and winddriven baroclinic Rossby waves. J. Geophys. Res., 107, doi:10.1029/2001JC001131.

    Google Scholar 

  • Hanawa, K. and J. Kamada (2001): Variability of core layer temperature (CLT) of North Pacific subtropical mode water. Geophys. Res. Lett., 28, 2229–2232.

    Article  Google Scholar 

  • Hasegawa, T., T. Yasuda and K. Hanawa (2007): Multidecadal variability of the upper ocean heat content anomaly field in the North Pacific and its relationship to the Aleutian Low and the Kuroshio transport. Papers in Meteor. and Geophys., 58, 155–166.

    Article  Google Scholar 

  • Imawaki, S., H. Uchida, H. Ichikawa, M. Fukasawa, S. Umatani and the ASUKA Group (2001): Satellite altimeter monitoring the Kuroshio transport south of Japan. Geophys. Res. Lett., 28, 17–20.

    Article  Google Scholar 

  • Ishi, Y. and K. Hanawa (2005): Large-scale variabilities of wintertime wind stress curl field in the North Pacific and their relation to atmospheric teleconnection patterns. Geophys. Res. Lett., 32, L10607, doi:10.1029/2004GL022330.

    Article  Google Scholar 

  • Ishikawa, K. and Coauthors (2003): Oceanic variability observed in the repeat hydrographic data by the Japan Meteorological Agency and its causes. Weather Service Bull., 70, 1–34 (in Japanese).

    Google Scholar 

  • Kalnay, E. and Coauthors (1996): The NCEP/NCAR 40-year reanalysis project. Bull. Amer. Meteor. Soc., 77, 437–471.

    Article  Google Scholar 

  • Le Traon, P. Y. and G. Dibarboure (1999): Mesoscale mapping capabilities from multiple altimeter missions. J. Atmos. Oceanic Technol., 16, 1208–1223.

    Article  Google Scholar 

  • Levitus, S. (1982): Climatological Atlas of the World Ocean. NOAA Prof. Paper No. 13, U.S. Govt. Printing Office, Washington, D.C., 173 pp.

    Google Scholar 

  • Miller, A. J., D. R. Cayan and W. B. White (1998): A westward-intensified decadal change in the North Pacific thermocline and gyre-scale circulation. J. Climate, 11, 3112–3127.

    Article  Google Scholar 

  • Minobe, S. (1999): Resonance in bidecadal and pentadecadal climate oscillations over the North Pacific: Role in climate regime shift. Geophys. Res. Lett., 26, 855–858.

    Article  Google Scholar 

  • Nonaka, M. and S.-P. Xie (2003): Covariations of sea surface temperature and wind over the Kuroshio and its extension: Evidence for ocean-to-atmosphere feedback. J. Climate, 16, 1404–1413.

    Article  Google Scholar 

  • Ogiwara, H., T. Soga and Y. Takatsuki (2005): Long-term variability at the subtropical gyre in 137°E meridian. Weather Service Bull., 72, 27–33 (in Japanese).

    Google Scholar 

  • Overland, J. E., J. M. Adams and N. A. Bond (1999): Decadal variability of the Aleutian Low and its relation to high-latitude circulation. J. Climate, 12, 1542–1548.

    Article  Google Scholar 

  • Qiu, B. (2000): Interannual variability of the Kuroshio Extension system and its impact on the wintertime SST field. J. Phys. Oceanogr., 30, 1486–1502.

    Article  Google Scholar 

  • Qiu, B. (2003): Kuroshio Extension variability and forcing the Pacific decadal oscillation: Responses and potential feedback. J. Phys. Oceanogr., 33, 2465–2482.

    Google Scholar 

  • Qiu, B. and T. M. Joyce (1992): Interannual variability in the mid- and low-latitude western North Pacific. J. Phys. Oceanogr., 22, 1062–1079.

    Article  Google Scholar 

  • Rio, M.-H. and F. Hernandez (2004): A mean dynamic topography computed over the world ocean from altimetry, in situ measurements, and a geoid model. J. Geophys. Res., 109, doi:10.1029/2003JC002226.

    Google Scholar 

  • Rio, M.-H., P. Schaeffer, J.-M. Lemoine and F. Hernandez (2005): Estimation of the ocean mean dynamic topography through the combination of altimetric data, in-situ measurements and GRACE geoid: From global to regional studies. Proc. of the GOCINA Int. Workshop, Luxembourg.

  • Saiki, M. (1987): Interannual variations of subtropical gyre in the western North Pacific. J. Mar. Meteor. Soc., 63, 113–125 (in Japanese).

    Google Scholar 

  • Sugimoto, S. and K. Hanawa (2009): Decadal and interdecadal variations of the Aleutian Low activity and their relation to atmospheric teleconnection patterns. J. Meteor. Soc. Japan, 87, 601–614.

    Article  Google Scholar 

  • Talley, L. D. (1988): Potential vorticity distribution in the North Pacific. J. Phys. Oceanogr., 18, 89–106.

    Article  Google Scholar 

  • Tanimoto, Y., H. Nakamura, T. Kagimoto and S. Yamane (2003): An active role of extratropical sea surface temperature anomalies in determining anomalous turbulent heat flux. J. Geophys. Res., 108, 3304, doi:10.1029/2002JC001750.

    Article  Google Scholar 

  • Tokinaga, H., Y. Tanimoto, M. Nonaka, B. Taguchi, T. Fukamachi, S.-P. Xie, H. Nakamura, T. Watanabe and I. Yasuda (2006): Atmospheric sounding over the winter Kuroshio Extension: Effect of surface stability on atmospheric boundary layer structure. Geophys. Res. Lett., 33, L04703, doi:10.1029/2005GL025102.

    Article  Google Scholar 

  • Trenberth, K. E. and J. W. Hurrell (1994): Decadal atmosphereocean variations in the Pacific. Climate Dyn., 9, 303–319.

    Article  Google Scholar 

  • Vivier, F., K. Kelly and L. Thompson (2002): Heat budget in the Kuroshio extension region: 1993–99. J. Phys. Oceanogr., 32, 3436–3454.

    Article  Google Scholar 

  • Xie, S.-P., T. Kunitani, A. Kubokawa, M. Nonaka and S. Hosoda (2000): Interdecadal thermocline variability in the North Pacific for 1958–1997: A GCM simulation. J. Phys. Oceanogr., 30, 2798–2813.

    Article  Google Scholar 

  • Yasuda, T. and K. Hanawa (1997): Decadal changes in the mode waters in the midlatitude North Pacific. J. Phys. Oceanogr., 27, 858–870.

    Article  Google Scholar 

  • Yasuda, T. and Y. Kitamura (2003): Long-term variability of North Pacific subtropical mode water in response to spinup of the subtropical gyre. J. Oceanogr., 59, 279–290.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Shusaku Sugimoto.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Sugimoto, S., Hanawa, K., Narikiyo, K. et al. Temporal variations of the net Kuroshio transport and its relation to atmospheric variations. J Oceanogr 66, 611–619 (2010). https://doi.org/10.1007/s10872-010-0050-8

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10872-010-0050-8

Keywords