Skip to main content

Advertisement

Log in

Effects of seawater acidification by ocean CO2 sequestration on bathypelagic prokaryote activities

  • Short Contribution
  • Published:
Journal of Oceanography Aims and scope Submit manuscript

Abstract

We investigated the effects of seawater acidification induced by ocean CO2 sequestration on bathypelagic prokaryotes. We simulated acidification conditions by bubbling high-CO2 air or adding chemical buffer solutions to seawater samples in order to examine changes in total cell counts, heterotrophic production rate, direct viable cell count, and relative abundance of Bacteria and Archaea. Considerable suppression of prokaryotic activities was observed at pH 7.0 or lower, especially in samples enriched with organic matter. The relative abundance of Archaea increased with increasing CO2 concentration. We found that seawater acidification can potentially alter heterotrophic activities and community structure of bathypelagic prokaryotes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Explore related subjects

Discover the latest articles and news from researchers in related subjects, suggested using machine learning.

References

  • Amann, R. I., L. Krumholz and D. A. Stahl (1990): Fluorescent-oligonucleotide probing of whole cells for determinative, phylogenetic, and environmental studies in microbiology. J. Bacteriol., 172, 762–770.

    Google Scholar 

  • Azam, F. (1998): Microbial control of oceanic carbon flux: The plot thickens. Science, 280, 694–696.

    Article  Google Scholar 

  • Boyd, P. W. and T. W. Trull (2007): Understanding the export of biogenic particles in oceanic waters: Is there consensus? Prog. Oceanogr., 72, 276–312.

    Article  Google Scholar 

  • Chen, B., Y. Song, M. Nishio, S. Someya and M. Akai (2005): Modeling near-field dispersion from direct injection of carbon dioxide into the ocean. J. Geophys. Res., 110, C09S15.

    Article  Google Scholar 

  • Cho, B. C. and F. Azam (1988): Major role of bacteria in biogeochemical fluxes in the ocean’s interior. Nature, 332, 441–443.

    Article  Google Scholar 

  • Coffin, R. B., M. T. Montgomery, T. J. Boyd and S. M. Masutani (2004): Influence of ocean CO2 sequestration on bacterial production. Energy, 29, 1511–1520.

    Article  Google Scholar 

  • DeLong, E. F., C. M. Preston, T. Mincer, V. Rich, S. J. Hallam, N.-U. Frigaard, A. Martinez, M. B. Sullivan, R. Edwards, B. R. Brito, S. W. Chisholm and D. M. Karl (2006): Community genomics among stratified microbial assemblages in the ocean’s interior. Science, 311, 496–503.

    Article  Google Scholar 

  • Doney, S. C., V. J. Fabry, R. A. Feely and J. A. Kleypas (2009): Ocean acidification: The other CO2 problem. Annu. Rev. Mar. Sci., 1, 169–192.

    Article  Google Scholar 

  • Herndl, G. J., T. Reinthaler, E. Teira, H. van Aken, C. Veth, A. Pernthaler and J. Pernthaler (2005): Contribution of Archaea to total prokaryotic production in the deep Atlantic Ocean. Appl. Environ. Microb., 71, 2303–2309.

    Article  Google Scholar 

  • Herzog, H. J. (2001): What future for carbon capture and sequestration? Environ. Sci. Technol., 35, 148A–153A.

    Article  Google Scholar 

  • Hewson, I., J. A. Steele, D. G. Capone and J. A. Fuhrman (2006): Remarkable heterogeneity in meso- and bathypelagic bacterioplankton assemblage composition. Limnol. Oceanogr., 51, 1274–1283.

    Article  Google Scholar 

  • Hoffert, M. I., K. Caldeira, G. Benford, D. R. Criswell, C. Green, H. Herzog, A. K. Jain, H. S. Kheshgi, K. S. Lackner, J. S. Lewis, H. D. Lightfoot, W. Manheimer, J. C. Mankins, M. E. Mauel, L. J. Perkins, M. E. Schlesinger, T. Volk and T. M. L. Wigley (2002): Advanced technology paths to global climate stability: Energy for a greenhouse planet. Science, 298, 981–987.

    Article  Google Scholar 

  • Hoppe, H.-G., H. Ducklow and B. Karrasch (1993): Evidence for dependency of bacterial growth on enzymatic hydrolysis of particulate organic matter in the mesopelagic ocean Mar. Ecol. Prog. Ser., 93, 277–283.

    Article  Google Scholar 

  • IMO (International Maritime Organization) (2008): London protocol: Special guidelines for assessment of carbon dioxide streams for disposal into sub-seabed geological formations. 14 pp. http://www.imo.org/includes/blastDataOnly.asp/data_id%3D25527/9-CO2SequestrationEnglish.pdf.

  • IPCC (Intergovernmental Panel on Climate Change) (2005): IPCC Special Report on Carbon Dioxide Capture and Storage. Prepared by Working Group III of the IPCC, ed. by B. Metz, O. Davidson, H. C. de Coninck, M. Loos and L. A. Meyer, Cambridge University Press, Cambridge and New York, 442 pp.

    Google Scholar 

  • IPCC (2007): IPCC Fourth Assessment Report on Climate Change 2007: The Physical Science Basis Contribution of Working Group I to the Fourth Assessment Report of the IPCC, ed. by S. Solomon, D. Qin, M. Manning, Z. Chen, M. Marquis, K. B. Averyt, M. Tignor and H. L. Miller, Cambridge University Press, Cambridge and New York, 996 pp.

    Google Scholar 

  • Ishida, H., Y. Watanabe, T. Fukuhara, S. Kaneko, K. Furusawa and Y. Shirayama (2005): In situ enclosure experiment using a benthic chamber system to assess the effect of high concentration of CO2 on deep-sea benthic communities. J. Oceanogr., 61, 835–843.

    Article  Google Scholar 

  • Joux, F. and P. Lebaron (1997): Ecological implications of an improved direct viable count method for aquatic bacteria. Appl. Environ. Microbiol., 63, 3643–3647.

    Google Scholar 

  • Karner, M. B., E. F. DeLong and D. M. Karl (2001): Archaeal dominance in the mesopelagic zone of the Pacific Ocean. Nature, 409, 507–510.

    Article  Google Scholar 

  • Kikkawa, T., J. Kita and A. Ishimatsu (2004): Comparison of the lethal effect of CO2 and acidification on red sea bream (Pagrus major) during the early developmental stages. Mar. Pollut. Bull., 48, 108–110.

    Article  Google Scholar 

  • Kirchman, D. (2001): Measuring bacterial biomass production and growth rates from leucine incorporation in natural aquatic environments. Method. Microbiol., 30, 227–236.

    Article  Google Scholar 

  • Kogure, K., U. Simidu and N. Taga (1979): A tentative direct microscopic method for counting living marine bacteria. Can. J. Microbiol., 25, 415–420.

    Article  Google Scholar 

  • Kogure, K., U. Simidu and N. Taga (1980): Distribution of viable marine bacteria in neritic seawater around Japan. Can. J. Microbiol., 26, 318–323.

    Article  Google Scholar 

  • Kurihara, H., S. Shimode and Y. Shirayama (2004): Sub-lethal effects of elevated concentration of CO2 on planktonic copepods and sea urchins. J. Oceanogr., 60, 743–750.

    Article  Google Scholar 

  • Marchetti, C. (1977): On geoengineering and the CO2 problem. Climatic Change, 1, 59–68.

    Article  Google Scholar 

  • Montgomery, M. T., T. J. Boyd, C. L. Osburn, R. E. Plummer, S. M. Masutani and R. B. Coffin (2009): Desalination technology waste streams: Effect of pH and salinity on metabolism of marine microbial assemblages. Desalination, 249, 861–864.

    Article  Google Scholar 

  • Nagata, T. (2008): Organic matter-bacterial interactions in seawater. p. 207–241. In Microbial Ecology of the Ocean, 2nd ed., ed. by D. L. Kirchman, John Wiley & Sons, Inc., Hoboken, N.J.

    Google Scholar 

  • Nagata, T., H. Fukuda, R. Fukuda and I. Koike (2000): Bacterioplankton distribution and production in deep Pacific waters: Large-scale geographic variations and possible coupling with sinking particle fluxes. Limnol. Oceanogr., 45, 426–435.

    Article  Google Scholar 

  • Ogawa, H. and E. Tanoue (2003): Dissolved organic matter in oceanic waters. J. Oceanogr., 59, 129–147.

    Article  Google Scholar 

  • Orr, J. C. (2004): Modelling of Ocean Storage of CO 2The GOSAC Study. Report PH4/37, International Energy Agency, Greenhouse Gas R&D Programme, Cheltenham, U.K., 96 pp.

    Google Scholar 

  • Porter, K. G. and Y. S. Feig (1980): The use of DAPI for identifying and counting aquatic microflora. Limnol. Oceanogr., 25, 943–948.

    Article  Google Scholar 

  • Sabine, C. L., R. A. Feely, N. Gruber, R. M. Key, K. Lee, J. L. Bullister, R. Wanninkhof, C. S. Wong, D. W. R. Wallace, B. Tilbrook, F. J. Millero, T.-H. Peng, A. Kozyr, T. Ono and A. F. Rios (2004): The oceanic sink for anthropogenic CO2. Science, 305, 367–371.

    Article  Google Scholar 

  • Sedlacek, L., D. Thistle, K. R. Carman, J. W. Fleeger and J. P. Barry (2009): Effects of carbon dioxide on deep-sea harpacticoids revisited. Deep-Sea Res. Part I, 56, 1018–1025.

    Article  Google Scholar 

  • Shibata, A., Y. Goto, H. Saito, T. Kikuchi, T. Toda and S. Taguchi (2006): Comparison of SYBR Green I and SYBR Gold stains for enumerating bacteria and viruses by epifluorescence microscopy. Aquat. Microb. Ecol., 43, 223–231.

    Article  Google Scholar 

  • Shitashima, K. (1997): CO2 supply from deep-sea hydrothermal systems. Waste Manage., 17, 385–390.

    Article  Google Scholar 

  • Simon, M. and F. Azam (1989): Protein content and protein synthesis rates of planktonic marine bacteria. Mar. Ecol. Prog. Ser., 51, 201–213.

    Article  Google Scholar 

  • Smith, D. C., M. Simon, A. L. Alldredge and F. Azam (1992): Intense hydrolytic enzyme activity on marine aggregates and implications for rapid particle dissolution. Nature, 359, 139–142.

    Article  Google Scholar 

  • Smith, W. H. F. and D. T. Sandwell (1997): Global sea floor topography from satellite altimetry and ship depth soundings. Science, 277, 1956–1962.

    Article  Google Scholar 

  • Steinberg, D. K., B. A. S. Van Mooy, K. O. Buesseler, P. W. Boyd, T. Kobari and D. M. Karl (2008): Bacterial vs. zooplankton control of sinking particle flux in the ocean’s twilight zone. Limnol. Oceanogr., 53, 1327–1338.

    Google Scholar 

  • Takeuchi, K., Y. Fujioka, Y. Kawasaki and Y. Shirayama (1997): Impacts of high concentration of CO2 on marine organisms; a modification of CO2 ocean sequestration. Energ. Convers. Manage., 38, S337–S341.

    Article  Google Scholar 

  • Teira, E., T. Reinthaler, A. Pernthaler, J. Pernthaler and G. J. Herndl (2004): Combining catalyzed reporter deposition-fluorescence in situ hybridization and microautoradiography to detect substrate utilization by Bacteria and Archaea in the deep ocean. Appl. Environ. Microbiol., 70, 4411–4414.

    Article  Google Scholar 

  • Watanabe, Y., A. Yamaguchi, H. Ishida, T. Harimoto, S. Suzuki, Y. Sekido, T. Ikeda, Y. Shirayama, M. M. Takahashi, T. Ohsumi and J. Ishizaka (2006): Lethality of increasing CO2 levels on deep-sea copepods in the western North Pacific. J. Oceanogr., 62, 185–196.

    Article  Google Scholar 

  • Wickett, M. E., K. Caldeira and P. B. Duffy (2003): Effect of horizontal grid resolution on simulations of oceanic CFC-11 uptake and direct injection of anthropogenic CO2. J. Geophys. Res., 108, 3189.

    Article  Google Scholar 

  • Yamada, N. and M. Suzumura (2010): Effects of seawater acidification on hydrolytic enzyme activities. J. Oceanogr., 66, 233–241.

    Article  Google Scholar 

  • Yamaguchi, A., Y. Watanabe, H. Ishida, T. Harimoto, K. Furusawa, S. Suzuki, J. Ishizaka, T. Ikeda and M. M. Takahashi (2004): Latitudinal differences in the planktonic biomass and community structure down to the greater depths in the western North Pacific. J. Oceanogr., 60, 773–787.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Namiha Yamada.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Yamada, N., Tsurushima, N. & Suzumura, M. Effects of seawater acidification by ocean CO2 sequestration on bathypelagic prokaryote activities. J Oceanogr 66, 571–580 (2010). https://doi.org/10.1007/s10872-010-0047-3

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10872-010-0047-3

Keywords