Abstract
We investigated the effects of seawater acidification induced by ocean CO2 sequestration on bathypelagic prokaryotes. We simulated acidification conditions by bubbling high-CO2 air or adding chemical buffer solutions to seawater samples in order to examine changes in total cell counts, heterotrophic production rate, direct viable cell count, and relative abundance of Bacteria and Archaea. Considerable suppression of prokaryotic activities was observed at pH 7.0 or lower, especially in samples enriched with organic matter. The relative abundance of Archaea increased with increasing CO2 concentration. We found that seawater acidification can potentially alter heterotrophic activities and community structure of bathypelagic prokaryotes.
Explore related subjects
Discover the latest articles and news from researchers in related subjects, suggested using machine learning.References
Amann, R. I., L. Krumholz and D. A. Stahl (1990): Fluorescent-oligonucleotide probing of whole cells for determinative, phylogenetic, and environmental studies in microbiology. J. Bacteriol., 172, 762–770.
Azam, F. (1998): Microbial control of oceanic carbon flux: The plot thickens. Science, 280, 694–696.
Boyd, P. W. and T. W. Trull (2007): Understanding the export of biogenic particles in oceanic waters: Is there consensus? Prog. Oceanogr., 72, 276–312.
Chen, B., Y. Song, M. Nishio, S. Someya and M. Akai (2005): Modeling near-field dispersion from direct injection of carbon dioxide into the ocean. J. Geophys. Res., 110, C09S15.
Cho, B. C. and F. Azam (1988): Major role of bacteria in biogeochemical fluxes in the ocean’s interior. Nature, 332, 441–443.
Coffin, R. B., M. T. Montgomery, T. J. Boyd and S. M. Masutani (2004): Influence of ocean CO2 sequestration on bacterial production. Energy, 29, 1511–1520.
DeLong, E. F., C. M. Preston, T. Mincer, V. Rich, S. J. Hallam, N.-U. Frigaard, A. Martinez, M. B. Sullivan, R. Edwards, B. R. Brito, S. W. Chisholm and D. M. Karl (2006): Community genomics among stratified microbial assemblages in the ocean’s interior. Science, 311, 496–503.
Doney, S. C., V. J. Fabry, R. A. Feely and J. A. Kleypas (2009): Ocean acidification: The other CO2 problem. Annu. Rev. Mar. Sci., 1, 169–192.
Herndl, G. J., T. Reinthaler, E. Teira, H. van Aken, C. Veth, A. Pernthaler and J. Pernthaler (2005): Contribution of Archaea to total prokaryotic production in the deep Atlantic Ocean. Appl. Environ. Microb., 71, 2303–2309.
Herzog, H. J. (2001): What future for carbon capture and sequestration? Environ. Sci. Technol., 35, 148A–153A.
Hewson, I., J. A. Steele, D. G. Capone and J. A. Fuhrman (2006): Remarkable heterogeneity in meso- and bathypelagic bacterioplankton assemblage composition. Limnol. Oceanogr., 51, 1274–1283.
Hoffert, M. I., K. Caldeira, G. Benford, D. R. Criswell, C. Green, H. Herzog, A. K. Jain, H. S. Kheshgi, K. S. Lackner, J. S. Lewis, H. D. Lightfoot, W. Manheimer, J. C. Mankins, M. E. Mauel, L. J. Perkins, M. E. Schlesinger, T. Volk and T. M. L. Wigley (2002): Advanced technology paths to global climate stability: Energy for a greenhouse planet. Science, 298, 981–987.
Hoppe, H.-G., H. Ducklow and B. Karrasch (1993): Evidence for dependency of bacterial growth on enzymatic hydrolysis of particulate organic matter in the mesopelagic ocean Mar. Ecol. Prog. Ser., 93, 277–283.
IMO (International Maritime Organization) (2008): London protocol: Special guidelines for assessment of carbon dioxide streams for disposal into sub-seabed geological formations. 14 pp. http://www.imo.org/includes/blastDataOnly.asp/data_id%3D25527/9-CO2SequestrationEnglish.pdf.
IPCC (Intergovernmental Panel on Climate Change) (2005): IPCC Special Report on Carbon Dioxide Capture and Storage. Prepared by Working Group III of the IPCC, ed. by B. Metz, O. Davidson, H. C. de Coninck, M. Loos and L. A. Meyer, Cambridge University Press, Cambridge and New York, 442 pp.
IPCC (2007): IPCC Fourth Assessment Report on Climate Change 2007: The Physical Science Basis Contribution of Working Group I to the Fourth Assessment Report of the IPCC, ed. by S. Solomon, D. Qin, M. Manning, Z. Chen, M. Marquis, K. B. Averyt, M. Tignor and H. L. Miller, Cambridge University Press, Cambridge and New York, 996 pp.
Ishida, H., Y. Watanabe, T. Fukuhara, S. Kaneko, K. Furusawa and Y. Shirayama (2005): In situ enclosure experiment using a benthic chamber system to assess the effect of high concentration of CO2 on deep-sea benthic communities. J. Oceanogr., 61, 835–843.
Joux, F. and P. Lebaron (1997): Ecological implications of an improved direct viable count method for aquatic bacteria. Appl. Environ. Microbiol., 63, 3643–3647.
Karner, M. B., E. F. DeLong and D. M. Karl (2001): Archaeal dominance in the mesopelagic zone of the Pacific Ocean. Nature, 409, 507–510.
Kikkawa, T., J. Kita and A. Ishimatsu (2004): Comparison of the lethal effect of CO2 and acidification on red sea bream (Pagrus major) during the early developmental stages. Mar. Pollut. Bull., 48, 108–110.
Kirchman, D. (2001): Measuring bacterial biomass production and growth rates from leucine incorporation in natural aquatic environments. Method. Microbiol., 30, 227–236.
Kogure, K., U. Simidu and N. Taga (1979): A tentative direct microscopic method for counting living marine bacteria. Can. J. Microbiol., 25, 415–420.
Kogure, K., U. Simidu and N. Taga (1980): Distribution of viable marine bacteria in neritic seawater around Japan. Can. J. Microbiol., 26, 318–323.
Kurihara, H., S. Shimode and Y. Shirayama (2004): Sub-lethal effects of elevated concentration of CO2 on planktonic copepods and sea urchins. J. Oceanogr., 60, 743–750.
Marchetti, C. (1977): On geoengineering and the CO2 problem. Climatic Change, 1, 59–68.
Montgomery, M. T., T. J. Boyd, C. L. Osburn, R. E. Plummer, S. M. Masutani and R. B. Coffin (2009): Desalination technology waste streams: Effect of pH and salinity on metabolism of marine microbial assemblages. Desalination, 249, 861–864.
Nagata, T. (2008): Organic matter-bacterial interactions in seawater. p. 207–241. In Microbial Ecology of the Ocean, 2nd ed., ed. by D. L. Kirchman, John Wiley & Sons, Inc., Hoboken, N.J.
Nagata, T., H. Fukuda, R. Fukuda and I. Koike (2000): Bacterioplankton distribution and production in deep Pacific waters: Large-scale geographic variations and possible coupling with sinking particle fluxes. Limnol. Oceanogr., 45, 426–435.
Ogawa, H. and E. Tanoue (2003): Dissolved organic matter in oceanic waters. J. Oceanogr., 59, 129–147.
Orr, J. C. (2004): Modelling of Ocean Storage of CO 2—The GOSAC Study. Report PH4/37, International Energy Agency, Greenhouse Gas R&D Programme, Cheltenham, U.K., 96 pp.
Porter, K. G. and Y. S. Feig (1980): The use of DAPI for identifying and counting aquatic microflora. Limnol. Oceanogr., 25, 943–948.
Sabine, C. L., R. A. Feely, N. Gruber, R. M. Key, K. Lee, J. L. Bullister, R. Wanninkhof, C. S. Wong, D. W. R. Wallace, B. Tilbrook, F. J. Millero, T.-H. Peng, A. Kozyr, T. Ono and A. F. Rios (2004): The oceanic sink for anthropogenic CO2. Science, 305, 367–371.
Sedlacek, L., D. Thistle, K. R. Carman, J. W. Fleeger and J. P. Barry (2009): Effects of carbon dioxide on deep-sea harpacticoids revisited. Deep-Sea Res. Part I, 56, 1018–1025.
Shibata, A., Y. Goto, H. Saito, T. Kikuchi, T. Toda and S. Taguchi (2006): Comparison of SYBR Green I and SYBR Gold stains for enumerating bacteria and viruses by epifluorescence microscopy. Aquat. Microb. Ecol., 43, 223–231.
Shitashima, K. (1997): CO2 supply from deep-sea hydrothermal systems. Waste Manage., 17, 385–390.
Simon, M. and F. Azam (1989): Protein content and protein synthesis rates of planktonic marine bacteria. Mar. Ecol. Prog. Ser., 51, 201–213.
Smith, D. C., M. Simon, A. L. Alldredge and F. Azam (1992): Intense hydrolytic enzyme activity on marine aggregates and implications for rapid particle dissolution. Nature, 359, 139–142.
Smith, W. H. F. and D. T. Sandwell (1997): Global sea floor topography from satellite altimetry and ship depth soundings. Science, 277, 1956–1962.
Steinberg, D. K., B. A. S. Van Mooy, K. O. Buesseler, P. W. Boyd, T. Kobari and D. M. Karl (2008): Bacterial vs. zooplankton control of sinking particle flux in the ocean’s twilight zone. Limnol. Oceanogr., 53, 1327–1338.
Takeuchi, K., Y. Fujioka, Y. Kawasaki and Y. Shirayama (1997): Impacts of high concentration of CO2 on marine organisms; a modification of CO2 ocean sequestration. Energ. Convers. Manage., 38, S337–S341.
Teira, E., T. Reinthaler, A. Pernthaler, J. Pernthaler and G. J. Herndl (2004): Combining catalyzed reporter deposition-fluorescence in situ hybridization and microautoradiography to detect substrate utilization by Bacteria and Archaea in the deep ocean. Appl. Environ. Microbiol., 70, 4411–4414.
Watanabe, Y., A. Yamaguchi, H. Ishida, T. Harimoto, S. Suzuki, Y. Sekido, T. Ikeda, Y. Shirayama, M. M. Takahashi, T. Ohsumi and J. Ishizaka (2006): Lethality of increasing CO2 levels on deep-sea copepods in the western North Pacific. J. Oceanogr., 62, 185–196.
Wickett, M. E., K. Caldeira and P. B. Duffy (2003): Effect of horizontal grid resolution on simulations of oceanic CFC-11 uptake and direct injection of anthropogenic CO2. J. Geophys. Res., 108, 3189.
Yamada, N. and M. Suzumura (2010): Effects of seawater acidification on hydrolytic enzyme activities. J. Oceanogr., 66, 233–241.
Yamaguchi, A., Y. Watanabe, H. Ishida, T. Harimoto, K. Furusawa, S. Suzuki, J. Ishizaka, T. Ikeda and M. M. Takahashi (2004): Latitudinal differences in the planktonic biomass and community structure down to the greater depths in the western North Pacific. J. Oceanogr., 60, 773–787.
Author information
Authors and Affiliations
Corresponding author
Rights and permissions
About this article
Cite this article
Yamada, N., Tsurushima, N. & Suzumura, M. Effects of seawater acidification by ocean CO2 sequestration on bathypelagic prokaryote activities. J Oceanogr 66, 571–580 (2010). https://doi.org/10.1007/s10872-010-0047-3
Received:
Revised:
Accepted:
Published:
Issue Date:
DOI: https://doi.org/10.1007/s10872-010-0047-3