Journal of Oceanography

, Volume 66, Issue 2, pp 233–241 | Cite as

Effects of seawater acidification on hydrolytic enzyme activities

Original Articles

Abstract

We have investigated the effects of seawater acidification on the activities of leucine aminopeptidase (LAPase), β-glucosidase (BGase), phosphatase (P-ase), α-glucosidase (AGase), and lipase (L-ase), which are important promoters of degradation of marine organic matter, including proteins, carbohydrates, organic phosphorus compounds, and lipids. Seawater samples were collected from a eutrophic coastal area, from Tokyo Bay, and from oligotrophic pelagic waters outside the Kuroshio Current. Enzyme activities were measured using fluorogenic substrates added to the seawater samples, which were acidified from pH 8.2 to 5.6 by a chemical buffer. Spontaneous hydrolysis of the substrates was shown to be negligible in heat-inactivated control samples, thus validating our results. LAPase was the most sensitive to acidification; enzyme activity rapidly decreased from pH 8.2 to 7.8, corresponding to a realistic scenario of ocean acidification. L-ase activity also decreased with acidification. Activities of P-ase and BGase were relatively constant across the pH levels examined, suggesting that their activity is not appreciably influenced by acidification. The effect of acidification on P-ase activities differed between the coastal and semipelagic samples, and this was likely due to freshwater influence at the nearshore station. Because of the low activity of AGase in the sample, the effect of acidification on this enzyme could not be examined. The effects of acidification on enzyme activity appear to vary depending on enzyme type and location, but we conclude that acidification will cause changes in the cycling of organic matter in marine ecosystems, in particular to proteinous and lipid substances.

Keywords

Ocean acidification ocean CO2 sequestration hydrolytic enzyme organic matter bacteria 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Ammerman, J. W. and F. Azam (1985): Bacterial 5′-nucleotidase in aquatic ecosystems: a novel mechanism of phosphorus regeneration. Science, 227, 1338–1340.CrossRefGoogle Scholar
  2. Arnosti, C. (2003): Microbial extracellular enzymes and their role in dissolved organic matter cycling. p. 315–342. In Aquatic Ecosystems: Interactivity of Dissolved Organic Matter, ed. by S. E. G. Findlay and R. L. Sinsabaugh, Academic Press, London.Google Scholar
  3. Azam, F. and R. A. Long (2001): Sea snow microcosms. Nature, 414, 495–498.CrossRefGoogle Scholar
  4. Caldeira, K. and M. E. Wickett (2003): Anthropogenic carbon and ocean pH. Nature, 425, 365.CrossRefGoogle Scholar
  5. Caldeira, K. and M. E. Wickett (2005): Ocean model predictions of chemistry changes from carbon dioxide emissions to the atmosphere and ocean. J. Geophys. Res., 110, C09S04, doi:10.1029/JC002671.CrossRefGoogle Scholar
  6. Chen, B., Y. Song, M. Nishio, S. Someya and M. Akai (2005): Modeling near — field dispersion from direct injection of carbon dioxide into the ocean. J. Geophys. Res., 110, C09S15, doi:1029/2004JC002567.CrossRefGoogle Scholar
  7. Christian, J. R. and D. M. Karl (1995): Bacterial ectoenzymes in marine waters: Activity ratios and temperature responses in three oceanographic provinces. Limnol. Oceanogr., 40, 1042–1049.CrossRefGoogle Scholar
  8. Chróst, R. J. and W. Siuda (2002): Ecology of microbial enzymes in lake ecosystems. p. 35–72. In Enzymes in the Environment: Activity, Ecology, and Applications, ed. by R. G. Burns and R. P. Dick, Marcel Dekker, New York.Google Scholar
  9. Coffin, R. B., M. T. Montgomery, T. J. Boyd and S. M. Masutani (2004): Influence of ocean CO2 sequestration on bacterial production. Energy, 29, 1511–1520.CrossRefGoogle Scholar
  10. Doney, S. C., V. J. Fabry, R. A. Feely and J. A. Kleypas (2009): Ocean acidification: The other CO2 problem. Annu. Rev. Mar. Sci., 1, 169–192, doi:10.1146/annurev.marine.010908.163834.CrossRefGoogle Scholar
  11. Dyhrman, S. T. and K. C. Ruttenberg (2006): Presence and regulation of alkaline phosphatase activity in eukaryotic phytoplankton from the coastal ocean: Implications for dissolved organic phosphorus remineralization. Limnol. Oceanogr., 51, 1381–1390.CrossRefGoogle Scholar
  12. El-Shahed, A. M., H. Ibrahim and M. Abd-Elnaeim (2006): Isolation and characterization of phosphatase enzyme from the freshwater macroalga Cladophora glomerata Kützing (chlorophyta). Pakistan J. Biol. Sci., 9, 2456–2461.CrossRefGoogle Scholar
  13. Engel, A., K. G. Schulz, U. Riebesell, R. Bellerby, B. Delille and M. Schartau (2008): Effects of CO2 on particle size distribution and phytoplankton abundance during a mesocosm bloom experiment (PeECE II). Biogeosciences, 5, 509–521.CrossRefGoogle Scholar
  14. Fukuda, R., Y. Sohrin, N. Saotome, H. Fukuda, T. Nagata and I. Koike (2000): East-west gradient in ectoenzymes activities in the subarctic Pacific: Possible regulation by zinc. Limnol. Oceanogr., 45, 930–939.CrossRefGoogle Scholar
  15. Gambin, F., G. Bogé and D. Jamet (1999): Alkaline phosphatase in a littoral Mediterranean marine ecosystem: Role of the main plankton size classes. Mar. Environ. Res., 47, 441–456.CrossRefGoogle Scholar
  16. Grossart, H.-P., M. Allgaier, U. Passow and U. Riebesell (2006): Testing the effect of CO2 concentration on the dynamics of marine heterotrophic bacterioplankton. Limnol. Oceanogr., 51, 1–11.Google Scholar
  17. Herzog, H. J. (2001): What future for carbon capture and sequestration? Environ. Sci. Tech., 35, 148A–153A.CrossRefGoogle Scholar
  18. Hoffert, M. I., K. Caldeira, G. Benford, D. R. Criswell, C. Green, H. Herzog, A. K. Jain, H. S. Kheshgi, K. S. Lackner, J. S. Lewis, H. D. Lightfoot, W. Manheimer, J. C. Mankins, M. E. Mauel, L. J. Perkins, M. E. Schlesinger, T. Volk and T. M. L. Wigley (2002): Advanced technology paths to global climate stability: Energy for a greenhouse planet. Science, 298, 981–987.CrossRefGoogle Scholar
  19. Hollibaugh, J. T. and F. Azam (1983): Microbial degradation of dissolved proteins in seawater. Limnol. Oceanogr., 28, 1104–1116.CrossRefGoogle Scholar
  20. Hoppe, H.-G. (1983): Significance of exoenzymatic activities in the ecology of brackish water: measurements by means of methylumbelliferyl-substrates Mar. Ecol. Prog. Ser., 11, 299–308.CrossRefGoogle Scholar
  21. Hoppe, H.-G. (2003): Phosphatase activity in the sea. Hydrobiologia, 493, 187–200.CrossRefGoogle Scholar
  22. Hoppe, H.-G., H. C. Giesenhagen and K. Gocke (1998): Changing patterns of bacterial substrate decomposition in a eutrophication gradient. Aquat. Microb. Ecol., 15, 1–13.CrossRefGoogle Scholar
  23. Hoppe, H.-G., C. Arnosti and G. F. Herndl (2002): Ecological significance of bacterial enzymes in the marine environment. p. 73–107. In Enzymes in the Environment: Activity, Ecology, and Applications, ed. by R. G. Burns and R. P. Dick, Marcel Dekker, New York.Google Scholar
  24. Huesemann, M. H., A. D. Skillman and E. A. Crecelius (2002): The inhibition of marine nitrification by ocean disposal of carbon dioxide. Mar. Pollut. Bull., 44, 142–148.CrossRefGoogle Scholar
  25. IMO (International Maritime Organization) (2008): London Protocol: Special Guidelines for Assessment of Carbon Dioxide Streams for Disposal into Sub-Seabed Geological Formations. 14 pp. (available at http://www.imo.org/includes/blastDataOnly.asp/data_id%3D25527/9-CO2SequestrationEnglish.pdf).
  26. IPCC (Intergovernmental Panel on Climate Change) (2005): IPCC Special Report on Carbon Dioxide Capture and Storage. Prepared by Working Group III of the Intergovernmental Panel on Climate Change, ed. by B. Metz, O. Davidson, H. C. de Coninck, M. Loos and L. A. Meyer, Cambridge University Press, Cambridge and New York, 442 pp.Google Scholar
  27. Ishimatsu, A., T. Kikkawa, M. Hayashi, K.-S. Lee and J. Kita (2004): Effects of CO2 on marine fish: larvae and adults. J. Oceanogr, 60, 731–741.CrossRefGoogle Scholar
  28. Karner, M., D. Fuks and G. J. Herndl (1992): Bacterial activity along a trophic gradient. Microb. Ecol., 24, 243–257.CrossRefGoogle Scholar
  29. Kleypas, J. A., R. A. Feely, V. J. Fabry, C. Langdon, C. L. Sabine and L. L. Robbins (2006): Impacts of Ocean Acidification on Coral Reefs and Other Marine Calcifiers: A Guide for Future Research. Report of a workshop sponsored by NSF, NOAA, and USGS, 88 pp. (available at http://www.isse.ucar.edu/florida/report/Ocean_acidification_res_guide.pdf).
  30. Koike, I. and T. Nagata (1997): High potential activity of extracellular alkaline phosphatase in deep waters of the central Pacific. Deep-Sea Res. II, 44, 2283–2294.CrossRefGoogle Scholar
  31. Kurihara, H. (2008): Effects of CO2-driven ocean acidification on the early developmental stages of invertebrates. Mar. Ecol. Prog. Ser., 373, 275–284.CrossRefGoogle Scholar
  32. Li, H., M. J. W. Veldhuis and A. F. Post (1998): Alkaline phosphatase activities among planktonic communities in the northern Red Sea. Mar. Ecol. Prog. Ser., 173, 107–115.CrossRefGoogle Scholar
  33. Marchetti, C. (1977): On geoengineering and the CO2 problem. Clim. Change, 1, 59–68.CrossRefGoogle Scholar
  34. Mayor, D. J., C. Matthews, K. Cook, A. F. Zuur and S. Hay (2007): CO2-induced acidification affects hatching success in Calanus finmarchicus. Mar. Ecol. Prog. Ser., 350, 91–97.CrossRefGoogle Scholar
  35. Misic, C., M. Castellano, M. Fabiano, N. Ruggieri, V. Saggiomo and P. Povero (2006): Ectoenzymatic activity in surface waters: A transect from the Mediterranean Sea across the Indian Ocean to Australia. Deep-Sea Res. I, 53, 1517–1532.CrossRefGoogle Scholar
  36. Orr, J. C. (2004): Modelling of ocean storage of CO2-The GOSAC study, Report PH4/37, International Energy Agency, Greenhouse Gas R&D Programme, Cheltenham, U.K., 96 pp.Google Scholar
  37. Orr, J. C., V. J. Fabry, O. Aumont, L. Bopp, S. C. Doney, R. A. Feely, A. Gnanadesikan, N. Gruber, A. Ishida, F. Joos, R. M. Key, K. Lindsay, E. Maier-Reimer, R. Matear, P. Monfray, A. Mouchet, R. G. Najjar, G.-K. Plattner, K. B. Rodgers, C. L. Sabine, J. L. Sarmiento, R. Schlitzer, R. D. Slater, I. T. Totterdell, M.-F. Weirig, Y. Yamanaka and A. Yool (2005): Anthropogenic ocean acidification over the twenty-first century and its impact on calcifying organisms. Nature, 437, 681–686.CrossRefGoogle Scholar
  38. Patel, A. B., K. Fukami and T. Nishijima (2000): Regulation of seasonal variability of aminopeptidase activities in surface and bottom waters of Uranouchi Inlet, Japan. Aquat. Microb. Ecol., 21, 139–149.CrossRefGoogle Scholar
  39. Revilla, M., J. Alexander and P. M. Glibert (2005): Urea analysis in coastal waters: comparison of enzymatic and direct methods. Limnol. Oceanogr.: Methods, 3, 290–299.Google Scholar
  40. Riemann, L., G. F. Steward and F. Azam (2000): Dynamics of bacterial community composition and activity during a mesocosm diatom bloom. Appl. Environ. Microbiol., 66, 578–587.CrossRefGoogle Scholar
  41. Royal Society (2005): Ocean acidification due to increasing atmospheric carbon dioxide. Policy document 12/05. The Clyvedon Press, Cardiff, 57 pp. (available at http://royalsociety.org/displaypagedoc.asp?id=13539).Google Scholar
  42. Sedlacek, L., D. Thistle, K. R. Carman, J. W. Fleeger and J. P. Barry (2009): Effects of carbon dioxide on deep-sea harpacticoids revisited. Deep-Sea Res. I, 56, 1018–1025.CrossRefGoogle Scholar
  43. Shitashima, K. (1997): CO2 supply from deep-sea hydrothermal systems. Waste Managemefnt, 17, 385–390.CrossRefGoogle Scholar
  44. Smith, D. C., M. Simon, A. L. Alldredge and F. Azam (1992): Intense hydrolytic enzyme activity on marine aggregates and implications for rapid particle dissolution. Nature, 359, 139–142.CrossRefGoogle Scholar
  45. Smith, W. H. F. and D. T. Sandwell (1997): Global sea floor topography from satellite altimetry and ship depth soundings. Science, 277, 1956–1962.CrossRefGoogle Scholar
  46. Takeuchi, K., Y. Fujioka, Y. Kawasaki and Y. Shirayama (1997): Impacts of high concentration of CO2 on marine organisms; a modification of CO2 ocean sequestration. Energy Convers. Manage., 38, S337–S341.CrossRefGoogle Scholar
  47. Tanaka, T., T. F. Thingstad, T. Løvdal, H.-P. Grossart, A. Larsen, K. G. Schulz and U. Riebesell (2008): Availability of phosphate for phytoplankton and bacteria and of labile organic carbon for bacteria at different pCO2 levels in a mesocosm study. Biogeosciences, 5, 669–678.CrossRefGoogle Scholar
  48. Weiss, M. S., U. Abele, J. Weckesser, W. Welte, E. Schiltz and G. E. Schulz (1991): Molecular architecture and electrostatic properties of a bacterial porin. Science, 254, 1627–1630.CrossRefGoogle Scholar
  49. Whitton, B. A., A. M. Al-Shehri, N. T. W. Ellwood and B. L. Turner (2004): Ecological aspects of phosphatase activity in Cyanobacteria, Eukaryotic algae and Bryophytes. p. 205–241. In Organic Phosphorus in the Environment, ed. by B. L. Turner, E. Frossard and D. S. Baldwin, CABI Publishing, Wallingford.Google Scholar
  50. Wickett, M. E., K. Caldeira and P. B. Duffy (2003): Effect of horizontal grid resolution on simulations of oceanic CFC-11 uptake and direct injection of anthropogenic CO2. J. Geophys. Res., 108(C6), 3189, doi:10.1029/2001JC001130.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media B.V. 2010

Authors and Affiliations

  1. 1.National Institute of Advanced Industrial Science and Technology (AIST)AIST Tsukuba WestTsukubaJapan

Personalised recommendations