Skip to main content
Log in

Vertical double silicate maxima in the sea-ice reduction region of the western Arctic Ocean: Implications for an enhanced biological pump due to sea-ice reduction

  • Original Articles
  • Published:
Journal of Oceanography Aims and scope Submit manuscript

Abstract

The R/V Mirai conducted hydrographic surveys in the western Arctic Ocean during summer 2004 (Mirai04) over wide east-west ranges from Alaska to eastern Siberia, where sea-ice cover has been greatly reduced in recent summers. The obtained data reveal differences in silicate profiles between shelf slope areas east and west of the Chukchi Plateau, the ridge that divides the Canada Basin into the Alaskan and east Siberian sides. East of the plateau, a single silicate maximum was found in a layer of Pacific-origin winter water, as examined in many previous studies. In contrast, west of the plateau, we found vertical double silicate maxima, which are reported for the first time in this study. The shallower silicate maximum corresponded to an N** minimum, signaling denitrification at the shelf bottom. This suggests that the shallower silicate maximum was caused by the spreading of shelf water. In contrast, the deeper silicate maximum corresponded to an oxygen minimum and a maximum silicate/phosphate ratio (Si/P), suggesting that this deeper maximum resulted from the decomposition of opal-shelled organisms. We also compared a silicate profile from Mirai04 to aprofile from the Arctic Ocean Section 94 (AOS94) expedition of 1994, a heavy ice year. The results suggest that sea-ice loss has enhanced biological activities, likely resulting in the appearance of the deeper silicate maximum.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Aagaard, K., L. K. Coachman and E. Carmack (1981): On the halocline of the Arctic Ocean. Deep-Sea Res., 28, 529–545.

    Article  Google Scholar 

  • Anderson, L. and D. Dyrssen (1981): Chemical constituents of the Arctic Ocean in the Svalbard area. Oceanol. Acta, 4, 305–311.

    Google Scholar 

  • Carmack, E. C., R. W. Macdonald, R. G. Perkin, F. A. McLaughlin and R. J. Pearson (1995): Evidence for warming of Atlantic Water in the southern Canadian Basin of the Arctic Ocean: results from the Lasen-93 Expedition. Geophyis. Res. Lett., 22, 1061–1064.

    Article  Google Scholar 

  • Carmack, E. C., R. W. Macdonald and S. Jasper (2004): Phytoplankton productivity on the Canadian shelf of the Beaufort Sea. Mar. Ecol. Prog. Ser., 277, 37–50.

    Article  Google Scholar 

  • Carmack, E., D. Barber, J. Christensen, R. Macdonald, B. Rudels and E. Sakshaug (2006): Climate variability and physical forcing of the food webs and the carbon budget on panarctic shelves. Prog. Oceanogr., 71, 145–181.

    Article  Google Scholar 

  • Cauwet, G. and I. Sidorov (1996): The biogeochemistry of Lena River: organic carbon and nutrients distribution. Mar. Chem., 53, 211–227.

    Article  Google Scholar 

  • Christensen, J. P., J. W. Murray, A. H. Devol and L. A. Codispoti (1987): Denitrification in continental shelf sediments has major impact on the oceanic nitrogen budget. Global Biogeochem. Cycles, 1, 97–116.

    Article  Google Scholar 

  • Coachman, L. K. and C. A. Barnes (1961): The contribution of Bering Sea water to the Arctic Ocean. Arctic, 14, 147–161.

    Article  Google Scholar 

  • Coachman, L. K., K. Aagaard and R. B. Tripp (1975): Bering Strait: The Regional Physical Oceanography. Univ. of Wash. Press, Seattle, 172 pp.

    Google Scholar 

  • Codispoti, L. A., G. E. Friederich, C. M. Sakamoto and L. I. Gordon (1991): Nutrient cycling and primary production in the marine systems of the Arctic and Antarctic. J. Mar. Sys., 2, 359–384.

    Article  Google Scholar 

  • Codispoti, L. A., C. Flagg, V. Kelly and J. H. Swift (2005): Hydrographic conditions during the 2002 SBI process experiments. Deep-Sea Res. II, 52, 3199–3226.

    Article  Google Scholar 

  • Colony, R. and L. Timokhov (2001): Hydrochemical Atlas of the Arctic Ocean. International Arctic Research Center, University of Alaska, U.S.A., and State Research Center—the Arctic and Antarctic Research Institute, Russia, CDROM.

    Google Scholar 

  • Cota, G. F., L. R. Pomeroy, W. G. Harrison, E. P. Jones, F. Peters, W. M. Sheldon, Jr. and T. R. Weingartner (1996): Nutrients, primary production and microbial heterotrophy in the southeastern Chukchi Sea: Arctic summer nutrient depletion and heterotrophy. Mar. Ecol. Prog. Ser., 135, 247–258.

    Article  Google Scholar 

  • Devol, A. H., L. A. Codispoti and J. P. Christensen (1997): Summer and winter denitrification rates in western Arctic shelf sediments. Cont. Shelf Res., 17, 1029–1050.

    Article  Google Scholar 

  • Dittmar, T. and G. Kattner (2003): The biogeochemistry of the river and shelf ecosystem of the Arctic Ocean: a review. Mar. Chem., 83, 103–120.

    Article  Google Scholar 

  • Dunne, J. P., R. A. Armstrong, A. Gnanadesikan and J. L. Sarmiento (2005): Empirical and mechanistic models for the particle export ratio. Global Biogeochem. Cycles, 19, GB4026, doi:10.1029/2004GB002390.

    Article  Google Scholar 

  • Ekwurzel, B., P. Schlosser, R. A. Mortlock and R. G. Fairbanks (2001): River runoff, sea ice meltwater, and Pacific water distribution and mean residence times in the Arctic Ocean. J. Geophys. Res., 106, 9075–9092.

    Article  Google Scholar 

  • Emmerton, C. A., L. F. W. Lesack and W. F. Vincent (2008): Mackenzie River nutrient delivery to the Arctic Ocean and effects of the Mackenzie Delta during open water conditions. Global Biogeochem. Cycles, 22, GB1024, doi:10.1029/2006GB002856.

    Article  Google Scholar 

  • Gosselin, M., M. Levasseur, P. A. Wheeler, R. A. Horner and B. C. Booth (1997): New measurements of phytoplankton and ice algal production in the Arctic Ocean. Deep-Sea Res. II, 44, 1623–1644.

    Article  Google Scholar 

  • Hansell, D. A., T. E. Whitledge and J. J. Goering (1993): Patterns of nitrate utilization and new production over the Bering-Chukchi shelf. Cont. Shelf Res., 13, 601–627.

    Article  Google Scholar 

  • Hill, V. and G. Cota (2005): Spatial patterns of primary production on the shelf, slope and basin of the Western Arctic in 2002. Deep-Sea Res. II, 52, 3344–3354.

    Article  Google Scholar 

  • Itoh, M., E. Carmack, K. Shimada, F. McLaughlin, S. Nishino and S. Zimmermann (2007): Formation and spreading of Eurasian source oxygen-rich halocline water into the Canadian Basin in the Arctic Ocean. Geophys. Res. Lett., 34, L08603, doi:10.1029/2007GL029482.

    Article  Google Scholar 

  • Jones, E. P. and L. G. Anderson (1986): On the origin of the chemical properties of the Arctic Ocean halocline. J. Geophys. Res., 91, 10,759–10,767.

    Article  Google Scholar 

  • Kinney, P., M. E. Arhelger and D. C. Burrell (1970): Chemical characteristics of water masses in the American Basin of the Arctic Ocean. J. Geophys. Res., 75, 4097–4104.

    Article  Google Scholar 

  • Lee, S. H. and T. E. Whitledge (2005): Primary and new production in the deep Canada Basin during summer 2002. Polar Biol., 28, 190–197.

    Article  Google Scholar 

  • Legendre, L. (1990): The significance of microalgal blooms for fisheries and for the export of particulate organic carbon in oceans. J. Plankton Res., 12, 681–699.

    Article  Google Scholar 

  • McLaughlin, F. A., E. C. Carmack, R. W. Macdonald and J. K. B. Bishop (1996): Physical and geochemical properties across the Atlantic/Pacific water mass boundary in the southern Canadian Basin. J. Geophys. Res., 101, 1183–1197.

    Article  Google Scholar 

  • McRoy, C. P. (1993): ISHTAR, the project: an overview of Inner Shelf Transfer and Recycling in the Bering and Chukchi seas. Cont. Shelf Res., 13, 473–479.

    Article  Google Scholar 

  • Moore, R. M., M. G. Lowings and F. C. Tan (1983): Geochemical profiles in the Central Arctic Ocean: their relation to freezing and shallow circulation. J. Geophys. Res., 88, 2667–2674.

    Article  Google Scholar 

  • National Ice Center (2006): National Ice Center Arctic Sea Ice Charts and Climatologies in Gridded Format, edited and compiled by F. Fetterer and C. Fowler, National Snow and Ice Data Center, Boulder, Colorado, U.S.A., Digital media.

    Google Scholar 

  • Nishino, S., K. Shimada, M. Itoh, M. Yamamoto-Kawai and S. Chiba (2008): East-west differences in water mass, nutrient, and chlorophyll a distributions in the sea-ice reduction region of the western Arctic Ocean. J. Geophys. Res., 113, C00A01, doi:10.1029/2007JC004666.

    Article  Google Scholar 

  • Olsson, K. and L. G. Anderson (1997): Input and biogeochemical transformation of dissolved carbon in the Siberian shelf seas. Cont. Shelf Res., 17, 819–833.

    Article  Google Scholar 

  • Polyakov, I. and L. Timokhov (2008): Report of the NABOS/Double Silicate Maxima in the Arctic Ocean 883 CABOS 2008 Expedition Activities in the Arctic Ocean. International Arctic Research Center/University of Alaska, Fairbanks, 96 pp.

    Google Scholar 

  • Redfield, A. C., B. H. Ketchum and F. A. Richards (1963): The influence of organisms on the composition of seawater. p. 26–77. In The Sea, Vol. 2, ed. by M. N. Hill, John Wiley, New York.

    Google Scholar 

  • Rudels, B., L. G. Anderson and E. P. Jones (1996): Formation and evolution of the surface mixed layer and halocline of the Arctic Ocean. J. Geophys. Res., 101, 8807–8821.

    Article  Google Scholar 

  • Sakshaug, E. (2004): Primary and secondary production in the Arctic Seas. p. 57–82. In The Organic Carbon Cycle in the Arctic Ocean, ed. by R. Stein and R. W. Macdonald, Springer, Berlin.

    Chapter  Google Scholar 

  • Schlitzer, R. (2003): Ocean Data View. https://doi.org/www.awibremerhaven.de/GEO/ODV

  • Semiletov, I., O. Dudarev, V. Luchin, A. Charkin, K. H. Shin and N. Tanaka (2005): The East Siberian Sea as a transition zone between Pacific-derived waters and Arctic shelf waters. Geophys. Res. Lett., 32, L10614, doi:10.1029/2005GL022490.

    Article  Google Scholar 

  • Shimada, K. (2004): R/V Mirai Cruise Report MR04-05, ed. by K. Shimada, S. Nishino and M. Itoh, JAMSTEC, Yokosuka, Japan, 110 pp.

    Google Scholar 

  • Shimada, K., E. C. Carmack, K. Hatakeyama and T. Takizawa (2001): Varieties of shallow temperature maximum waters in the western Canada Basin of the Arctic Ocean. Geophys. Res. Lett., 28, 3441–3444.

    Article  Google Scholar 

  • Shimada, K., M. Itoh, S. Nishino, F. McLaughlin, E. Carmack and A. Proshutinsky (2005): Halocline structure in the Canada Basin of the Arctic Ocean. Geophys. Res. Lett., 32, L03605, doi:10.1029/2004GL021358.

    Google Scholar 

  • Shimada, K., T. Kamoshida, M. Itoh, S. Nishino, E. Carmack, F. McLaughlin, S. Zimmermann and A. Proshutinsky (2006): Pacific Ocean inflow: influence on catastrophic reduction of sea ice cover in the Arctic Ocean. Geophys. Res. Lett., 33, L08605, doi:10.1029/2005GL025624.

    Google Scholar 

  • Steele, M., J. Morison, W. Ermold, I. Rigor, M. Ortmeyer and K. Shimada (2004): Circulation of summer Pacific halocline water in the Arctic Ocean. J. Geophys. Res., 109, C02027, doi:10.1029/2003JC002009.

    Article  Google Scholar 

  • Vetrov, A. A. and E. A. Romankevich (2004): Carbon Cycle in the Russian Arctic Seas. Springer-Verlag, Berlin, Heidelberg, New York, 332 pp.

    Book  Google Scholar 

  • Walsh, J. J., C. P. McRoy, L. K. Coachman, J. J. Goering, J. J. Nihoul, T. E. Whitledge, T. H. Blackburn, P. L. Parker, C. D. Wirick, P. G. Shuert, J. M. Grebmeier, A. M. Springer, R. D. Tripp, D. A. Hansell, S. Djenidi, E. Deleersnijder, K. Henriksen, B. A. Lund, P. Anderson, F. E. Müller-Karger and K. Dean (1989): Carbon and nitrogen cycling with the Bering/Chukchi Seas: source regions for organic matter effecting AOU demands of the Arctic Ocean. Prog. Oceanogr., 22, 277–359.

    Article  Google Scholar 

  • Welschmeyer, N. A. (1994): Fluorometric analysis of chlorophyll a in the presence of chlorophyll b and pheopigments. Limnol. Oceanogr., 39, 1985–1992.

    Article  Google Scholar 

  • Wheeler, P. A. (1997): Preface: the 1994 Arctic Ocean Section. Deep-Sea Res. II, 44, 1483–1485.

    Article  Google Scholar 

  • Wheeler, P. A., J. M. Watkins and R. L. Hansing (1997): Nutrients, organic carbon and organic nitrogen in the upper water column of the Arctic Ocean: implications for the sources of dissolved organic carbon. Deep-Sea Res. II, 44, 1571–1592.

    Article  Google Scholar 

  • Woodgate, R. A., K. Aagaard, J. H. Swift, K. K. Falkner and W. M. Smethie, Jr. (2005): Pacific ventilation of the Arctic Ocean’s lower halocline by upwelling and diapycnal mixing over the continental margin. Geophys. Res. Lett., 32, L18609, doi:10.1029/2005GL023999.

    Google Scholar 

  • Yamamoto-Kawai, M., N. Tanaka and S. Pivovarov (2005): Freshwater and brine behaviors in the Arctic Ocean deduced from historical data of δ18O and alkalinity (1929–2002 A.D.). J. Geophys. Res., 110, C10003, doi:10.1029/2004JC002793.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Shigeto Nishino.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Nishino, S., Shimada, K., Itoh, M. et al. Vertical double silicate maxima in the sea-ice reduction region of the western Arctic Ocean: Implications for an enhanced biological pump due to sea-ice reduction. J Oceanogr 65, 871–883 (2009). https://doi.org/10.1007/s10872-009-0072-2

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10872-009-0072-2

Keywords

Navigation