Skip to main content

Surface heat fluxes during hot events

Abstract

We selected surface flux datasets to investigate the heat fluxes during “hot events”; (HEs), defined as short-term, large-scale phenomena involving very high sea surface temperature (SST). Validation of the heat fluxes against in-situ ones, which are estimated from in-situ observation in HE sampling conditions, shows the accuracies (bias ± RMS error) of net shortwave radiation, net long wave radiation, latent heat and sensible heat fluxes are 20 ± 45.0 W m−2, −9 ± 12.3 W m−2, −2.3 ± 31.5 W m−2 and 1.5 ± 5.0 W m−2, respectively. Statistical analyses of HEs show that, during these events, net solar radiation remains high and then decreases from 246 to 220 W m−2, while latent heat is low and then increases from 100 W m−2 to 124 W m−2. Histogram peaks indicate net solar radiation of 270 W m−2 and latent heat flux of 90 W m−2 during HEs. Further, HEs are shown to evolve in three phases: formation, mature, and ending phases. Mean heat gain (HG) in the HE formation phase of 60 W m−2 is larger than the reasonably estimated annual mean HG range of 0–25 W m−2 in the Indo-Pacific Warm Pool. Such large daily HG in the HE formation phase can be expected to increase SSTs and produce large amplitudes of diurnal SST variations during HEs, which have been observed by both satellite and in-situ measurements in our previous studies.

This is a preview of subscription content, access via your institution.

References

  • Bradley, E. F., J. S. Godfrey, P. A. Coppin and J. A. Butt (1993): Observations of net heat flux into the surface mixed layer of the western equatorial Pacific Ocean. J. Geophys. Res., 98(C12), 22,521–22,532.

    Article  Google Scholar 

  • Cronin, M. F. and M. J. McPhaden (1997): The upper ocean heat balance in the western equatorial Pacific warm pool during September–December 1992. J. Geophys. Res., 102(C4), 8533–8553.

    Article  Google Scholar 

  • Da Silva, A. M., C. C. Young and S. Levitus (1994): Atlas of surface marine data, 1994. Vol. 1; Algorithms and procedures. NOAA Atlas NESDIS 6, U.S. Dept. of Commerce, 83 pp.

  • Fairall, C. W., E. F. Bradley, J. E. Hare, A. A. Grachev and J. B. Edson (2003): Bulk parameterization of air-sea fluxes: Updates and verification for the COARE algorithm. J. Climate, 16, 571–591.

    Article  Google Scholar 

  • Fasullo, J. and P. J. Webster (1999): Warm pool SST variability in relation to the surface energy balance. J. Climate, 12 1292–1304.

    Article  Google Scholar 

  • Gent, P. R. (1991): The heat budget of the TOGA-COARE domain in an ocean model. J. Geophys. Res., 96(Supplement), 3323–3330.

    Article  Google Scholar 

  • Godfrey, J. S. and E. J. Lindstrom (1989): The heat budget of the equatorial western Pacific surface mixed layer. J. Geophys. Res., 94(C6), 8007–8017.

    Article  Google Scholar 

  • Godfrey, J. S., M. Nunez, E. F. Bradley, P. A. Coppin and E. J. Lindstrom (1991): On the net surface heat flux into the western equatorial Pacific. J. Geophys. Res., 96(Supplement), 3391–3400.

    Article  Google Scholar 

  • Graham, N. E. and T. P. Barnett (1987): Sea surface temperature, surface wind divergence, and convection over the tropical oceans. Science, 238, 657–659.

    Article  Google Scholar 

  • Hallberg, R. and A. K. Inamdar (1993): Observations of seasonal variations in atmospheric greenhouse trapping and its enhancement at high sea surface temperature. J. Climate, 6, 920–931.

    Article  Google Scholar 

  • Hsuing, J. (1985): Estimates of global oceanic meridional heat transport. J. Phys. Oceanogr., 15, 1405–1413.

    Article  Google Scholar 

  • Kalnay, E. et al. (1996): The NCEP-NCAR 40 year reanalysis project. Bull. Amer. Meteorol. Soc., 77, 437–471.

    Article  Google Scholar 

  • Kawai, Y., H. Kawamura, S. Takahashi, K. Hosoda, H. Murakami, M. Kachi and L. Guan (2006): Satellite-based high-resolution global optimum interpolation sea surface temperature data. J. Geophys. Res., 111, C06016, doi:10.1029/2005JC003313.

    Article  Google Scholar 

  • Kawamura, H., H. Qin and K. Ando (2008): In-situ diurnal sea surface temperature variations and near-surface thermal structure in the tropical hot event of the Indo-Pacific warm pool. J. Oceanogr., 64, 847–857.

    Article  Google Scholar 

  • Onogi, K. et al. (2006): JRA-25: Japanese 25-year re-analysis. Q. J. R. Meteorol. Soc., 131, 3259–3268.

    Article  Google Scholar 

  • Qin, H., H. Kawamura and Y. Kawai (2007): Detection of hot event in the equatorial Indo-Pacific warm pool using advanced satellite sea surface temperature, solar radiation, and wind speed. J. Geophys. Res.-Ocean, 112, C07015, doi:10.1029/2006JC003969.

    Article  Google Scholar 

  • Qin, H., H. Kawamura, F. Sakaida and K. Ando (2008): A case study of the tropical Hot Event in November 2006 (HE0611) using a geostationary meteorological satellite and the TAO/TRITON mooring array. J. Geophys. Res.-Ocean, 113, C08045, doi:10.1029/2007JC004640.

    Article  Google Scholar 

  • Reed, R. K. (1985): An estimate of the climatological heat fluxes over the tropical Pacific Ocean. J. Climate Appl. Meteor., 24, 833–840.

    Article  Google Scholar 

  • Reynolds, R. W. and T. M. Smith (1994): Improved global sea surface temperature analyses using optimum interpolation. J. Climate, 7, 929–948.

    Article  Google Scholar 

  • Schiffer, R. A. and W. B. Rossow (1985): ISCCP global radiance data set: A new resource for climate research. Bull. Amer. Meteorol. Soc., 66, 1498–1505, doi:10.1175/1520-0477.

    Article  Google Scholar 

  • Shinoda, T., H. H. Hendon and J. D. Glick (1998): Intraseasonal variability of surface fluxes and sea surface temperature in the tropical western Pacific and Indian Oceans. J. Climate, 7, 1685–1702.

    Article  Google Scholar 

  • Tompkins, A. M. (2001): On the relationship between tropical convection and sea surface temperature. J. Climate, 14, 633–637.

    Article  Google Scholar 

  • Waliser, D. E. (1996): Formation and limiting mechanisms for very high sea surface temperature: Linking the dynamics and the thermodynamics. J. Climate, 9, 161–187.

    Article  Google Scholar 

  • Wang, W. and M. J. McPhaden (2000): The surface layer heat balance in the equatorial Pacific ocean. Part II: Interannual variability. J. Phys. Oceanogr., 30, 2989–3008.

    Article  Google Scholar 

  • Weare, B. C., P. T. Strub and M. D. Samuel (1981): Annual mean surface heat flux in the tropical ocean. J. Phys. Oceanogr., 11, 705–711.

    Article  Google Scholar 

  • Yu, L., X. Jin and R. A. Weller (2008): Multidecade global flux datasets from the Objectively Analyzed Air-sea Fluxes (OAFlux) project: Latent and sensible heat fluxes, ocean evaporation, and related surface meteorological variables. Woods Hole Oceanographic Institution, OAFlux Project Technical Report, OA-2008-01, 64 pp., Woods Hole, Massachusetts.

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Huiling Qin.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Qin, H., Kawamura, H. Surface heat fluxes during hot events. J Oceanogr 65, 605–613 (2009). https://doi.org/10.1007/s10872-009-0051-7

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10872-009-0051-7

Keywords

  • Heat fluxes
  • hot event
  • Indo-Pacific warm pool
  • very high SST