Skip to main content

Advertisement

Log in

Nutrient transport from an artificial upwelling of deep sea water

Journal of Oceanography Aims and scope Submit manuscript

Abstract

The transport of nutrient-rich, deep sea water from an artificial upwelling pipe has been simulated. A numerical model has been built within a commercial Computational Fluid Dynamics (CFD) package. The model considers the flow of the deep sea water after it is ejected from the pipe outlet in a negatively buoyant plume (densimetric Froude number = −2.6), within a stably stratified ocean environment subject to strong ocean current cross flow. Two cross-flow profiles were tested with momentum flux ratios equal to 0.92 and 3.7. The standard k-ε turbulence model has been employed and a range of turbulent Schmidt and Prandtl numbers tested. In all cases the results show that the rapid diffusion of heat and salinity at the pipe outlet causes the plume to attain neutral buoyancy very rapidly, preventing strong fountain-like behavior. At the higher momentum flux ratio fountain-like behavior is more pronounced close to the pipe outlet. The strong cross-current makes horizontal advection the dominant transport process downstream. The nutrient plume trajectory remains largely within one relatively thin stratified layer, making any ocean cross-flow profile less important. Very little unsteady behavior was observed. The results show that the nutrient is reduced to less than 2% of its inlet concentration 10 meters downstream of the inlet and this result is largely independent of turbulent Prandtl or Schmidt number. Initial results would suggest that if such an artificial upwelling were to be viable for an ocean farming project, a large number of upwelling pipes would be necessary. Further work will have to determine the minimum nutrient concentration required to sustain a viable phytoplankton population and the required spacing between upwelling pipes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price includes VAT (France)

Instant access to the full article PDF.

Institutional subscriptions

References

  • Burchard, H. and K. Bolding (2001): Comparative analysis of four second-moment turbulence closure models for the oceanic mixed layer. J. Phys. Oceanogr., 31, 1943–1968.

    Article  Google Scholar 

  • Goudsmit, G. H., H. Burchard, F. Peeters and A. Wuest (2002): Application of k-ε turbulence models to enclosed basins: The role of internal seiches. J. Geophys. Res., 107, 3230.

    Article  Google Scholar 

  • Hassid, S. (2002): On the gravitational terms of the k-e and other turbulence models. Ocean Dyn., 52, 169–178.

    Article  Google Scholar 

  • He, G., Y. Guo and A. T. Hsu (1999): Effect of Schmidt number on the turbulent scalar mixing in a jet-in-crossflow. Int. J. Heat Mass Transf., 42, 3727–3738.

    Article  Google Scholar 

  • Henkes, R. A. W. M., F. F. van der Flugt and C. J. Hoogendoorn (1991): Natural convection flow in a square cavity calculated with low-Reynolds-number turbulence models. Int. J. Heat Mass Transf., 34, 377–388.

    Article  Google Scholar 

  • Huq, P. (1997): Observations of jets in density stratified crossflows. Atmos. Environ., 31, 2011–2022.

    Article  Google Scholar 

  • Huq, P. and E. Stewart (1996): A laboratory study of buoyant plumes in laminar and turbulent crossflows. Atmos. Environ., 30, 1125–1135.

    Article  Google Scholar 

  • Jirka, H. G. (2004): Integral model for turbulent buoyant jets in unbounded stratified flows. part 1: single round jet. Environ. Fluid Mech., 4, 1–56.

    Article  Google Scholar 

  • Kirke, B. (2003): Enhancing fish stocks with wave-powered artificial upwelling. Ocean Coastal Manage., 46, 901–915.

    Article  Google Scholar 

  • Large, W. G., G. Danabasoglu, J. C. McWilliams, P. R. Gent and F. O. Bryan (2001): Equatorial circulation of a global ocean climate model with anisotropic horizontal viscosity. J. Phys. Oceanogr., 31, 518–536.

    Article  Google Scholar 

  • Lin, W. and S. W. Armfield (2003): The Reynolds and Prandtl number dependence of weak fountains. Comput. Mech., 31, 379–389.

    Article  Google Scholar 

  • Luyten, P. J., S. Carniel and G. Umgiesser (2002): Validation of turbulence closure parameterizations for stably stratified flows using the PROVESS turbulence measurements in the North Sea. J. Sea Res., 47, 239–267.

    Article  Google Scholar 

  • Maruyama, S., K. Tsubaki, K. Taira and S. Sakai (2004): Artificial upwelling of deep seawater using the perpetual salt Nutrient Transport from an Artificial Upwelling of Deep Sea Water 359 fountain for cultivation of ocean desert. J. Oceanogr., 60, 563–568.

    Article  Google Scholar 

  • Pantzlaff, L. and R. M. Lueptow (1999): Transient positively and negatively buoyant turbulent round jets. Exp. Fluids, 27, 117–125.

    Article  Google Scholar 

  • Said, N. M., H. Mhiri, S. El Golli, G. Le Palec and P. Bournot (2003): Three-dimensional numerical calculations of a jet in an external cross flow: application to pollutant dispersion. J. Heat Transfer, 125, 510–522.

    Article  Google Scholar 

  • Smith, R. and J. McWilliams (2003): Anisotropic horizontal viscosity for ocean models. Ocean Model., 5, 129–156.

    Article  Google Scholar 

  • Stommel, H., A. B. Arons and D. Blanchard (1956): An ocean curiosity: the perpetual salt fountain. Deep-Sea Res., 3, 152–153.

    Google Scholar 

  • Tsubaki, K., S. Maruyama, A. Komiya and H. Mitsugashira (2007): Continuous measurement of an artificial upwelling of deep sea water induced by the perpetual salt fountain. Deep-Sea Res. Part I—Oceanogr. Res. Pap., 54, 75–84.

    Article  Google Scholar 

  • Umlauf, L. and H. Burchard (2003): A generic length-scale equation for geophysical turbulence models. J. Mar. Res., 61, 235–265.

    Article  Google Scholar 

  • Umlauf, L., H. Burchard and K. Hutter (2003): Extending the k-ω turbulence model towards oceanic applications. Ocean Model., 5, 195–218.

    Article  Google Scholar 

  • Van Maele, K. and B. Merci (2006): Application of two buoyancy-modified k-ε turbulence models to different types of buoyant plumes. Fire Saf. J., 41, 122–138.

    Article  Google Scholar 

  • Warner, J. C., C. R. Sherwood, H. G. Arango and R. P. Signell (2005): Performance of four turbulence closure models implemented using a generic length scale method. Ocean Model., 8, 81–113.

    Article  Google Scholar 

  • Williamson, N., N. Srinarayana, S. W. Armfield, G. D. McBain and W. Lin (2008): Low-Reynolds-number fountain behavior. J. Fluid Mech., 608, 297–317.

    Article  Google Scholar 

  • Yang, W. and R. R. Hwang (2001): Vertical buoyant jets in a linearly stratified ambient cross-stream. Environ. Fluid Mech., 1, 235–256.

    Article  Google Scholar 

  • Zhang, X. R., S. Maruyama, S. Sakai, K. Tsubaki and M. Behnia (2004): Flow prediction in upwelling deep seawater—the perpetual salt fountain. Deep-Sea Res. Part I—Oceanogr. Res. Pap., 51, 1145–1157.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Atsuki Komiya.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Williamson, N., Komiya, A., Maruyama, S. et al. Nutrient transport from an artificial upwelling of deep sea water. J Oceanogr 65, 349–359 (2009). https://doi.org/10.1007/s10872-009-0032-x

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10872-009-0032-x

Keywords

Navigation