Journal of Oceanography

, Volume 64, Issue 5, pp 675–690 | Cite as

A piecewise curve-fitting technique for vertical oceanographic profiles and its application to density distribution

  • Viacheslav G. Makarov
  • Oleg V. Zaytsev
  • Valentina D. Budaeva
  • Felipe Salinas-Gonzalez
Original Articles


A unified method of approximation, extrapolation, and objective layering is offered for processing vertical oceanographic profiles. The method is demonstrated using seawater density and consists of adjustable splitting of each individual profile into N vertical layers based on tentative, piecewise linear homogeneous approximation with specified accuracy and a final fitting of an N-layered analytical model to data. A set of 3N coefficients of the model includes one density value at the sea surface; N−1 depths of layer interfaces; and N pairs of coefficients that describe a profile shape within the n-th layer—an asymptotic density value (a key parameter for extrapolation) and a vertical scale of maximum density variability (related to vertical gradient). Several distinctive characteristics of the technique are: (1) It can be used for the analysis of the vertical structure of individual profiles when N is an unknown parameter, and spatial interpolation when N should be equal for all profiles. (2) A justified downward extrapolation of incomplete data is possible with the model, especially if historical deepwater profiles are available. (3) Layer interfaces, as well as other coefficients, are derived with only one fitting to the entire profile. (4) The technique, using its general formulation, can serve as a parent for developing various types of models. The simpler step-like (with hyperbolic or exponential approximation) and more complicated smooth (continuous in gradient space) models were designed and tested against a large number of density profiles from the Sea of Okhotsk and the Gulf of California. Comparison of parametric, z-levels and isopycnal averaging was done for the region off the northeastern coast of Sakhalin.


Piecewise curve-fitting splitting into layers homogeneous approximation vertical extrapolation nonlinear least squares method density profile Sea of Okhotsk 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Belkin, I. M. (1991): Morfological-Statistical Analysis of Ocean Stratification. Hydrometeoizdat Publ., Leningrad, 132 pp. (in Russian).Google Scholar
  2. Budaeva, V. D. and V. G. Makarov (1999): A peculiar water regime of currents in the area of the eastern Sakhalin shelf. PICES Sci. Rep., 12, 131–138.Google Scholar
  3. Chu, P. C. (2006): P-Vector Inverse Method. Springer, Berlin, Heidelberg, New York, 605 pp.Google Scholar
  4. Chu, P. C., C. R. Fralick, S. D. Haeger and M. J. Carron (1997): A parametric model for the Yellow Sea thermal variability. J. Geophys. Res., 102, 10,499–10,507.Google Scholar
  5. Chu, P. C., Q. Wang and R. H. Bourke (1999): A geometrical model for Beaufort/Chukchi Sea thermohaline structure. J. Atmos. Oceanic Technol., 16, 613–632.CrossRefGoogle Scholar
  6. Chu, P. C., C. Fan and W. T. Liu (2000): Determination of vertical thermal structure from sea surface temperature. J. Atmos. Oceanic Technol., 17, 971–979.CrossRefGoogle Scholar
  7. Degtyarev, G. M. and V. A. Filin (1971): On the methods for constructing average curves of the vertical distribution of oceanographic parameters. Okeanologia, 11, 138–145 (in Russian).Google Scholar
  8. Fedorov, K. N. (1976): Fine-Scale Thermohaline Structure of Ocean Water. Hydrometeoizdat Publ., Leningrad, 184 pp. (in Russian).Google Scholar
  9. Fukamachi, Y., G. Mizuta, K. I. Ohsima, L. D. Talley, S. C. Riser and M. Wakatsuchi (2004): Transport and modification processes of dense shelf water revealed by long-term moorings off Sakhalin in the Sea of Okhotsk. J. Geophys. Res., 109, C09S10, doi:10.1029/2003JC001906.CrossRefGoogle Scholar
  10. Haney, R. L., R. A. Hale and C. A. Collins (1995): Estimating subpycnocline density fluctuations in the California Current region from upper ocean observations. J. Atmos. Oceanic Technol., 12, 550–566.CrossRefGoogle Scholar
  11. Itoh, M., K. I. Oshima and M. Wakatsuchi (2003): Distribution and formation of Okhotsk Sea Intermediate Water: An analysis of isopycnal climatology data. J. Geophys. Res., 108, 3258, doi: 10.1029/2002JC001590.CrossRefGoogle Scholar
  12. Jackett, D. R. and T. J. McDougall (1995): Minimal adjustment of hydrographic profiles to achieve static stability. J. Atmos. Oceanic Technol., 12, 381–389.CrossRefGoogle Scholar
  13. Jackett, D. R. and T. J. McDougall (1997): A neutral density variable for the World’s Oceans. J. Phys. Oceanogr., 27, 237–263.CrossRefGoogle Scholar
  14. Kara, A. B., P. A. Rochford and H. E. Hurlburt (2000): An optimal definition for ocean mixed layer depth. J. Geophys. Res., 105, 16,803–16,821.Google Scholar
  15. Kozlov, V. F. (1968): The use of single-parameter density models to study the thermohaline circulation in an ocean of finite depth. Izvestiya, Atmos. Oceanic Phys., 4, 354–360.Google Scholar
  16. Kozlov, V. F., L. A. Molchanova and S. N. Bulgakov (1980): Application of density models at diagnostic calculation of oceanic currents. p. 49–61. In Hydrophysical Research in the Northwestern Pacific Ocean, ed. by K. T. Bogdanov, Russian Academic Press, Vladivostok (in Russian).Google Scholar
  17. Levitus, S. (1982): Climatological Atlas of the World Ocean. NOAA Prof. Paper 13, 173 pp.Google Scholar
  18. Lozier, M. S., M. S. McCartney and W. B. Owens (1994): Anomalous anomalies in averaged hydrographic data. J. Phys. Oceanogr., 24, 2624–2638.CrossRefGoogle Scholar
  19. Lozier, M. S., W. B. Owens and R. G. Curry (1995): The climatology of the North Atlantic. Prog. Oceanogr., 36, 1–44.CrossRefGoogle Scholar
  20. Macdonald, A. M., T. Suga and R. G. Curry (2001): An isopycnally averaged North Pacific climatology. J. Atmos. Oceanic Technol., 18, 394–420.CrossRefGoogle Scholar
  21. McDougall, T. J. (1987): Neutral surfaces. J. Phys. Oceanogr., 17, 1950–1964.CrossRefGoogle Scholar
  22. Mizuta, G., Y. Fukamachi, K. I. Ohshima and M. Wakatsuchi (2003): Structure and seasonal variability of the East Sakhalin Current. J. Phys. Oceanogr., 33, 2430–2445.CrossRefGoogle Scholar
  23. Press, W. H., S. A. Teukolsky, W. T. Vetterling and B. P. Flannery (1996): Numerical Recipes in Fortran 77: The Art of Scientific Computing. 2nd ed., Cambridge Univ. Press, 933 pp.Google Scholar
  24. Reid, R. O. (1948): A model of the vertical structure of mass in equatorial wind-driven current of a baroclinic ocean. J. Mar. Res., 7, 304–312.Google Scholar
  25. Smeed, D. A. and S. G. Alderson (1997): Inference of deep ocean structure from upper-ocean measurements. J. Atmos. Oceanic Technol., 14, 604–615.CrossRefGoogle Scholar
  26. Teague, W. J., M. J. Carron and P. J. Hogan (1990): A comparison between the generalized digital environmental model and Levitus climatologies. J. Geophys. Res., 95, 7167–7183.CrossRefGoogle Scholar
  27. Thomson, R. E. and I. V. Fine (2003): Estimating mixed layer depth from oceanic profile data. J. Atmos. Oceanic Technol., 20, 319–329.CrossRefGoogle Scholar
  28. Yoshida, K. (1965): A theoretical model of wind-induced density field in the oceans. J. Oceanogr. Soc. Japan, 21, 154–173.Google Scholar

Copyright information

© Springer Science+Business Media B.V. 2008

Authors and Affiliations

  • Viacheslav G. Makarov
    • 1
  • Oleg V. Zaytsev
    • 1
  • Valentina D. Budaeva
    • 2
  • Felipe Salinas-Gonzalez
    • 1
  1. 1.Interdisciplinary Center of Marine Sciences of the National Polytechnic Institute (CICIMAR-IPN)La Paz, B.C.S.Mexico
  2. 2.Far Eastern Regional Hydrometeorological Research Institute (FERHRI)VladivostokRussia

Personalised recommendations