Skip to main content
Log in

Numerical study of enhanced energy dissipation near a seamount

  • Published:
Journal of Oceanography Aims and scope Submit manuscript

Abstract

Using a two-dimensional primitive equation model, we examine nonlinear responses of a semidiurnal tidal flow impinging on a seamount with a background Garrett-Munk-like (GM-like) internal wavefield. It is found that horizontally elongated pancake-like structures of high vertical wavenumber near-inertial current shear are created both in the near-field (the region over the slope of the seamount) and far-field (the region over the flat bottom of the ocean). An important distinction is that the high vertical wavenumber near-inertial current shear is amplified only at mid-latitudes in the far-field (owing to a parametric subharmonic instability (PSI)), whereas it is amplified both at mid-and high-latitudes (above the latitude where PSI can occur) in the near-field. In order to clarify the generating mechanism for the strong shear in the near-field, additional numerical experiments are carried out with the GM-like background internal waves removed. The experiments show that the strong shear is also created, indicating that it is not caused by the interaction between the background GM-like internal waves and the semidiurnal internal tides. One possible explanation is proposed for the amplification of high vertical wavenumber near-inertial current shear in the near-field where tide residual flow resulting from tide-topography interaction plays an important role in transferring energy from high-mode internal tides to near-inertial internal waves.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Bryan, F. (1987): Parameter sensitivity of primitive equation ocean general circulation models. J. Phys. Oceanogr., 17(7), 970–985.

    Article  Google Scholar 

  • Egbert, G. D. and R. D. Ray (2000): Significant dissipation of tidal energy in the deep ocean inferred from satellite altimeter data. Nature, 405(6788), 775–778.

    Article  Google Scholar 

  • Furuichi, N., T. Hibiya and Y. Niwa (2005): Bispectral analysis of energy transfer within the two-dimensional oceanic internal wave field. J. Phys. Oceanogr., 35(11), 2104–2109, doi:10.1175/JPO2816.1.

    Article  Google Scholar 

  • Garrett, C. J. R. and W. H. Munk (1972): Space-time scales of internal waves. Geophys. Fluid Dyn., 3, 225–264.

    Article  Google Scholar 

  • Gill, A. E. (1982): Atmosphere-Ocean Dynamics. Academic Press, San Diego, Calif., 662 pp.

    Google Scholar 

  • Gregg, M. C. (1989): Scaling turbulent dissipation in the thermocline. J. Geophys. Res., 94(C7), 9686–9698.

    Article  Google Scholar 

  • Hibiya, T. and M. Nagasawa (2004): Latitudinal dependence of diapycnal diffusivity in the thermocline estimated using a finescale parameterization. Geophys. Res. Lett., 31(1), L01301, doi:10.1029/2003GL017998.

  • Hibiya, T., Y. Niwa, K. Nakajima and N. Suginohara (1996): Direct numerical simulation of the roll-off range of internal wave shear spectra in the ocean. J. Geophys. Res., 101(C6), 14123–14129.

    Article  Google Scholar 

  • Hibiya, T., Y. Niwa and K. Fujiwara (1998): Numerical experiments of nonlinear energy transfer within the oceanic internal wave spectrum. J. Geophys. Res., 103(C9), 18715–18722.

    Article  Google Scholar 

  • Hibiya, T., M. Nagasawa and Y. Niwa (2002): Nonlinear energy transfer within the oceanic internal wave spectrum at mid and high latitudes. J. Geophys. Res., 107(C11), 3207, doi:10.1029/2001JC001210.

    Article  Google Scholar 

  • Hibiya, T., M. Nagasawa and Y. Niwa (2006): Global mapping of diapycnal diffusivity in the deep ocean based on the results of expendable current profiler (XCP) surveys. Geophys. Res. Lett., 33(3), L03611, doi: 10.1029/ 2005GL025218.

  • LeBlond, P. H. and L. A. Mysak (1978): Waves in the Ocean. Elsevier Scientific Publishing Company, Amsterdam, 602 pp.

    Google Scholar 

  • Merrifield, M. A. and P. E. Holloway (2002): Model estimates of M2 internal tide energetics at the Hawaiian Ridge. J. Geophys. Res., 107(C8), 3179, doi:10.1029/2001JC000996.

    Article  Google Scholar 

  • Munk, W. H. (1966): Abyssal recipes. Deep-Sea Res., 13, 707–730.

    Google Scholar 

  • Munk, W. H. (1981): Internal waves and small-scale processes. p. 264–291. In Evolution of Physical Oceanography, ed. by B. S. Warren and C. Wunsch, MIT Press, Cambridge, Mass.

    Google Scholar 

  • Nagasawa, M., T. Hibiya, Y. Niwa, M. Watanabe, Y. Isoda, S. Takagi and Y. Kamei (2002): Distribution of fine-scale shear in the deep waters of the North Pacific obtained using expendable current profilers. J. Geophys. Res., 107(C12), 3221, doi:10.1029/2002JC001376.

    Article  Google Scholar 

  • Ou, H. W. and L. Maas (1986): Tidal-induced buoyancy flux and mean transverse circulation. Cont. Shelf Res., 5(6), 611–628.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Toshiyuki Hibiya.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Iwamae, N., Hibiya, T. & Niwa, Y. Numerical study of enhanced energy dissipation near a seamount. J Oceanogr 62, 851–858 (2006). https://doi.org/10.1007/s10872-006-0103-1

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10872-006-0103-1

Keywords

Navigation