Skip to main content
Log in

Efficiency of reduced-order, time-dependent adjoint data assimilation approaches

  • Original Article
  • Published:
Journal of Oceanography Aims and scope Submit manuscript

Abstract

Applications of adjoint data assimilation, which is designed to bring an ocean circulation model into consistency with ocean observations, are computationally demanding. To improve the convergence rate of an optimization, reduced-order optimization methods that reduce the size of the control vector by projecting it onto a limited number of basis functions were suggested. In this paper, we show that such order reduction can indeed speed up the initial convergence rate of an assimilation effort in the eastern subtropical North Atlantic using in situ and satellite data as constraints. However, an improved performance of the optimization was only obtained with a hybrid approach where the optimization is started in a reduced subspace but is continued subsequently using the full control space. In such an experiment about 50% of the computational cost can be saved as compared to the optimization in the full control space. Although several order-reduction approaches seem feasible, the best result was obtained by projecting the control vector onto Empirical Orthogonal Functions (EOFs) computed from a set of adjusted control vectors estimated previously from an optimization using the same model configuration.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Bennett, A. (1992): Inverse Methods in Physical Oceanography. Cambridge University Press, 346 pp.

  • Cane, M. A., A. Kaplan, R. N. Miller, B. Tang, E. C. Hackert and A. J. Busalacchi (1996): Mapping tropical Pacific sea level: data assimilation via a reduced state Kalman filter. J. Geophys. Res., 101(C10), 22599–22617.

    Google Scholar 

  • Cohn, S. E. and R. Tolding (1996): Approximate Kalman filters for stable and unstable dynamics. J. Meteor. Soc. Japan, 74, 63–75.

    Google Scholar 

  • Courtier, P. (1997): Dual formulation of four-dimensional variational assimilation. Quart. J. Roy. Meteor. Soc., 123, 2449–2461.

    Article  Google Scholar 

  • Courtier, P., J.-N. Thèpaut and A. Hollingsworth (1994): A strategy for operational implementation of 4D-Var, using an incremental approach. Quart. J. Roy. Meteor. Soc., 120, 1367–1387.

    Article  Google Scholar 

  • Daley, R. and E. Barker (2000): NAVDAS: Formulation and diagnostics. Mon. Wea. Rev., 129, 869–883.

    Article  Google Scholar 

  • De Mey, P. (1997): Data assimilation at the oceanic mesoscale: A review. J. Met. Soc. Japan, 75(1B), 415–427.

    Google Scholar 

  • Durbiano, S. (2001): Vecteurs caractéristiques des modèles océaniques pour la réduction d’ordre en assimilation de données. Ph.D. thesis, University of Grenoble.

  • ETOPO5 (1988): Digital relief of the surface of the earth. worldwide bathymetry/topography data announcement 88-mgg-02. Technical report, National Geophysical Data Center.

  • Fujii, Y. and M. Kamachi (2003): A reconstruction of observed profiles in the Sea East of Japan using vertical coupled temperature-salinity EOF modes. J. Oceanogr., 59, 173–186.

    Article  Google Scholar 

  • Fukumori, I. and P. Malanotte-Rizzoli (1995): An approximate Kalman filter for ocean data assimilation: an example with an idealized Gulf Stream model. J. Geophys. Res., 100, 6777–6793.

    Article  Google Scholar 

  • Ghil, M. and P. Malanotte-Rizzoli (1991): Data assimilation in meteorology and oceanography. Adv. Geophys., 33, 141–266.

    Google Scholar 

  • Giering, R. and T. Kaminski (1998): Recipes for adjoint code construction. ACM Trans. On Math. Software, 24, 437–474.

    Article  Google Scholar 

  • Gilbert, J. C. and C. Le Maréchal (1989): Some numerical experiments with variable storage Quasi-Newton algorithms. Math. Program., 45, 407–435.

    Article  Google Scholar 

  • Golub, G. and C. Van loan (1996): Matrix Computations. 3rd ed., The Johns Hopkins University Press, Baltimore, U.S.A., 694 pp.

    Google Scholar 

  • Hoteit, I., D.-T. Pham and J. Blum (2002): A simplified reduced-order kalman filtering and application to altimetric data assimilation in tropical pacific. J. Mar. Syst., 36, 101–127.

    Article  Google Scholar 

  • Kalnay and co-authors (1996): The NCEP/NCAR re-analysis project. Bull. Amer. Meteor. Soc., 77, 437–471.

    Article  Google Scholar 

  • Köhl, A., D. Stammer and B. Cornuelle (2006): Interannual to decadal changes in the ECCO global synthesis. J. Phys. Oceanogr. (in press).

  • Large, W., J. McWilliams and S. Doney (1994): Oceanic vertical mixing: A review and a model with a nonlocal boundary layer parameterization. Rev. Geophys., 32, 363–403.

    Article  Google Scholar 

  • Marotzke, J., R. Giering, Q. K. Zhang, D. Stammer, C. N. Hill and T. Lee (1999): Construction of the adjoint MIT ocean general circulation model and application to Atlantic heat transport sensitivity. J. Geophys. Res., 104, 29,529–29,548.

    Google Scholar 

  • Marshall, J., A. Adcroft, C. Hill, L. Perelman and C. Heisey (1997): A finite-volume, incompressible Navier Stokes model for studies of the ocean on parallel computers. J. Geophys. Res., 102, 5753–5766.

    Article  Google Scholar 

  • Menemenlis, N. and C. Wunsch (1997): Linearization of an oceanic general circulation model for data assimilation and climate studies. J. Atmos. Oceanic Tech., 14, 1420–1443.

    Article  Google Scholar 

  • Nash, S. G. (2000): A multigrid approach to discretized optimization problem. J. Comp. Appl. Math., 14, 99–116.

    Google Scholar 

  • Pham, D. T., J. Verron and M. C. Roubaud (1997): Singular evolutive Kalman filter with EOF initialization for data assimilation in oceanography. J. Mar. Syst., 16, 323–340.

    Article  Google Scholar 

  • Preisendorfer, R. (1988): Principal component analysis in meteorology and oceanography. Elsevier Sci. Publ., 17, 425 pp.

    Google Scholar 

  • Robert, C., S. Durbiano, E. Blayo, J. Verron, J. Blum and F.-X. Le Dimet (2005): A reduced-order strategy for 4D-Var data assimilation. J. Mar. Syst., 57, 70–82.

    Article  Google Scholar 

  • Stammer, D., C. Wunsch, R. Giering, C. Eckert, P. Heimbach, J. Marotzke, A. Adcroft, C. N. Hill and J. Marshall (2002): The global ocean circulation during 1992–1997, estimated from ocean observations and a general circulation model. J. Geophys. Res., 107(C9), 3118.

    Article  Google Scholar 

  • Vidard, P. A., E. Blayo and F.X. Le Dimet (2000): 4D variational data analysis with imperfect model. Flow. Turbul. Combust., 65, 489–504.

    Article  Google Scholar 

  • Vogeler, A. and J. Schröter (1995): Assimilation of satellite altimeter data into an open ocean model. J. Geophys. Res., 100, 15951–15963.

    Google Scholar 

  • Wunsch, C. (1996): The Ocean Circulation Inverse Problem. Cambridge Univ. Press, New York, 442 pp.

    Google Scholar 

  • Yang, W. Y., I. M. Navon and P. Courtier (1996): A new Hessian pre-conditioning method applied to variational data assimilation experiments using NASA general circulation models. Mon. Wea. Rev., 124, 1000–1017.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ibrahim Hoteit.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Hoteit, I., Köhl, A. Efficiency of reduced-order, time-dependent adjoint data assimilation approaches. J Oceanogr 62, 539–550 (2006). https://doi.org/10.1007/s10872-006-0074-2

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10872-006-0074-2

Keywords

Navigation