Advertisement

Journal of Oceanography

, Volume 62, Issue 3, pp 373–393 | Cite as

Validation of ADEOS-II GLI ocean color products using in-situ observations

  • Hiroshi MurakamiEmail author
  • Kosei Sasaoka
  • Kohtaro Hosoda
  • Hajime Fukushima
  • Mitsuhiro Toratani
  • Robert Frouin
  • B. Greg Mitchell
  • Mati Kahru
  • Pierre-Yves Deschamps
  • Dennis Clark
  • Stephanie Flora
  • Motoaki Kishino
  • Sei-Ichi Saitoh
  • Ichio Asanuma
  • Akihiko Tanaka
  • Hiroaki Sasaki
  • Katsumi Yokouchi
  • Yoko Kiyomoto
  • Hiroaki Saito
  • Cécile Dupouy
  • Absornsuda Siripong
  • Satsuki Matsumura
  • Joji Ishizaka
ADEOS-II Ocean: Advanced Earth Observing Satellite-II Ocean

Abstract

The Global Imager (GLI) aboard the Advanced Earth Observing Satellite-II (ADEOS-II) made global observations from 2 April 2003 to 24 October 2003. In cooperation with several institutes and scientists, we obtained quality controlled match-ups between GLI products and in-situ data, 116 for chlorophyll-a concentration (CHLA), 249 for normalized water-leaving radiance (nLw) at 443 nm, and 201 for aerosol optical thickness at 865 nm (Tau_865) and Angstrom exponent between 520 and 865 nm (Angstrom). We evaluated the GLI ocean color products and investigated the causes of errors using the match-ups. The median absolute percentage differences (MedPD) between GLI and in-situ data were 14.1–35.7% for nLws at 380–565 nm, 52.5–74.8% nLws at 625–680 nm, 47.6% for Tau_865, 46.2% for Angstrom, and 46.6% for CHLA, values that are comparable to the ocean-color products of other sensors. We found that some errors in GLI products are correlated with observational conditions; nLw values were underestimated when nLw at 680 nm was high, CHLA was underestimated in absorptive aerosol conditions, and Tau_865 was overestimated in sunglint regions. The error correlations indicate that we need to improve the retrievals of the optical properties of absorptive aerosols and seawater and sea surface reflection for further applications, including coastal monitoring and the combined use of products from multiple sensors.

Keywords

Remote sensing validation ocean color atmospheric correction chlorophyll ADEOS-2 GLI match-up 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Austin, R. W. (1974): The remote sensing of spectral radiance from below the ocean surface. p. 317–344. In Optical Aspects of Oceanography, ed. by N. G. Jerlov and E. S. Nielsen, Academic Press, London.Google Scholar
  2. Bailey, S. and J. Werdell (2005): Satellite-to-In Situ Match-up Results. Available in http://seabass.gsfc.nasa.gov/matchup_results.html
  3. Bécu, G., P.-Y. Deschamps and J.-M. Nicolas (2003): Validation of MERIS level-2 marine and aerosol products using SIMBADA radiometric in situ measurements. MERIS and AATSR Validation Team Workshop, ESRIN, Frascati, Italy, October 20–24, 2003.Google Scholar
  4. Campbell, J. W. (1995): The Lognormal Distribution as a model for bio-optical variability in the sea. J. Geophys. Res., 100(C7), 13237–13254.Google Scholar
  5. Clark, D. K., H. R. Gordon, K. K. Voss, Y. Ge. W. Brokenow and C. Trees (1997): Validation of atmospheric correction over oceans. J. Geophys. Res., 102, 17209–17217.Google Scholar
  6. Cox, C. and W. Munk (1954): Measurements of the roughness of the sea surface from photographs of the sun’s glitter. J. Opt. Soc. Amer., 44, 838–850.CrossRefGoogle Scholar
  7. Deschamps, P.-Y., B. Fougnie, R. Frouin, P. Lecomte and C. Verwaerde (2004): SIMBAD: a field radiometer for satellite ocean-color validation. Applied Optics, 43(20), 4055–4069.CrossRefGoogle Scholar
  8. Dupouy, C., G. Dirberg, M. Tenorio, J. Neveux and A. L. Bouteiller (2004): Surveillance des Trichodesmium autour de la Nouvelle Calédonie, du Vanuatu, de Fidji et de Tonga (1998–2004). Archives Sciences de la Mer, Océanographie, Centre IRD de Nouméa, Nouvelle Calédonie, No. 7, 51 pp.Google Scholar
  9. Esposito, J. A., X. Xiong, A. Wu, J. Sun and W. L. Barnes (2004): MODIS reflective solar bands uncertainty analysis. Proc. SPIE Vol. 5542, p. 448–458, Earth Observing Systems IX.CrossRefGoogle Scholar
  10. Fargion, G. S. and C. R. McClain (2003a): SIMBIOS Project 2002 Annual Report. NASA Tech. Memo. 2003-211622, NASA Goddard Space Flight Center, Greenbelt, MD, U.S.A., 157 pp.Google Scholar
  11. Fargion, G. S. and C. R. McClain (2003b): MODIS Validation, Data Merger and Other Activities Accomplished by the SIMBIOS Project: 2002–2003. NASA Tech. Memo. 2003-212249, NASA/GSFC, Greenbelt, MD, U.S.A., 76 pp.Google Scholar
  12. Fargion, G. S., R. Barnes and C. McClain (2001): In Situ Aerosol Optical Thickness Collected by the SIMBIOS Program (1997–2000): Protocols, and Data QC and Analysis. NASA Tech. Memo. 2001-209982, NASA Goddard Space Flight Center, Greenbelt, MD, U.S.A., 107 pp.Google Scholar
  13. Fougnie, B., P.-Y. Deschamps and R. Frouin (1999): Vicarious Calibration of the POLDER ocean color spectral bands using in-situ measurements. IEEE Trans. Geosci. Rem. Sen., 37, 1567–1574.CrossRefGoogle Scholar
  14. Frouin, R. (2004): GLI Algorithm Description (ATBD), Algorithm to Estimate Daily Photo-synthetically Available Radiation at the Ocean Surface. Available in http://suzaku.eorc.jaxa.jp/GLI/ocean/algorithm/index.html
  15. Frouin, R. and H. Murakami (2006): Estimating photosynthetically available radiation at the ocean surface from ADEOS-II global imager data. J. Oceanogr. (submitted).Google Scholar
  16. Fukushima, H. (2004): GLI Algorithm Description (ATBD), Atmospheric Correction for Ocean Color. Available in http://suzaku.eorc.jaxa.jp/GLI/ocean/algorithm/index.html
  17. Gordon, H. R. (1997): Atmospheric correction of ocean color imagery in the Earth Observation System era. J. Geophys. Res., 102(D14), 17081–17106.Google Scholar
  18. Gordon, H. R. and A. Morel (1983): Remote Assessment of Ocean Color for Interpretation of Satellite Visible Imagery. Springer-Verlag, New York, 114 pp.Google Scholar
  19. Ishizaka, J., K. Furuya, M. Kishino and K. Kawasaki (2001): Eisei kaishoku data kousei·kenshou no tame no kaiyo kansoku shishin, chikyu kagaku gijyutu forum/chikyu kansoku iinkai/kaiyo kankyo science team. ESTO 00P0A1-D010, 19 pp. (in Japanese).Google Scholar
  20. Kahru, M. and B. G. Mitchell (1999): Empirical chlorophyll algorithm and preliminary SeaWiFS validation for the California Current. Int. J. Remote Sensing, 20(17), 3423–3429.CrossRefGoogle Scholar
  21. Kahru, M. and B. G. Mitchell (2001): Seasonal and non-seasonal variability of satellite-derived chlorophyll and CDOM concentration in the California Current. J. Geophys. Res., 106(C2), 2517–2529.CrossRefGoogle Scholar
  22. Kurihara, S., H. Murakami, K. Tanaka, T. Hashimoto, I. Asanuma and J. Inoue (2003): Calibration and instrument status of ADEOS-II Global Imager. Proc. SPIE Vol. 5155.Google Scholar
  23. McClain, C. R., R. A. Barnes, R. E. Eplee, J. B. A. Franz, N. C. Hsu, F. S. Patt, C. M. Pietras, W. D. Robinson, B. D. Schieber, G. M. Schmidt, M. Wang, S. W. Bailey and P. J. Werdell (2000): SeaWiFS Postlaunch Calibration and Validation Analysis, Part 2. NASA Tech. Memo. 2000-206892, Vol. 10, ed. by S. B. Hooker and E. R. Firestone, NASA Goddard Space Flight Center, Greenbelt, MD, U.S.A., 57 pp.Google Scholar
  24. Mitchell, B. G. and M. Kahru (1998): Algorithms for SeaWiFS standard products developed with the CalCOFI bio-optical data set. Calif. Coop. Oceanic Fish. Invest. Rep., 39, 133–147.Google Scholar
  25. Mitchell, B. G. and M. Kishino (2004): GLI Algorithm Description (ATBD) GLI In-Water Algorithms. Available in http://suzaku.eorc.jaxa.jp/GLI/ocean/algorithm/index.html
  26. Mitomi, Y., M. Toratani, M. Shimada, H. Oaku, H. Murakami, A. Mukaida, H. Fukushima and J. Ishizaka (1998): Evaluation of OCTS standard ocean color products: Comparison between satellite derived and ship measured values. p. 115–119. In Proc. 4th PORSEC 1998, Qingao, China, July 28–31, 1998.Google Scholar
  27. Morel, A. and J.-F. Berthon (1989): Surface pigments, algal biomass profiles, and potential production of the euphotic layer: Relationships reinvestigated in view of remote-sensing applications. Limnol. Oceanogr., 34(8), 1545–1562.CrossRefGoogle Scholar
  28. Mueller, J. L., D. K. Clark, V. S. Kuwahara, G. Lazin, S. W. Brown, G. S. Fargion, M. A. Yarbrough, M. Feinholz, S. Flora, W. Broenkow, Y. S. Kim, B. C. Johnson, M. Yuen, P. G. Strutton, T. D. Dickey, M. R. Abbott, R. M. Letelier, M. R. Lewis, S. McLean, F. P. Chavez, A. Barnard, J. R. Morrison, A. Subramaniam, D. Manov, X. Zheng, L. W. Harding, Jr., R. A. Barnes and K. R. Lykke (2003): Ocean Optics Protocols For Satellite Ocean Color Sensor Validation, Revision 4, Volume V: Special Topics in Ocean Optics Protocols and Appendices. NASA Tech. Memo. 2003-211621/Rev4-Vol. VI, ed. by J. L. Mueller, G. S. Fargion and C. R. McClain, NASA Goddard Space Flight Center, Greenbelt, MD, U.S.A., 141 pp.Google Scholar
  29. Murakami, H., M. Yoshida, K. Tanaka, H. Fukushima, M. Toratani, A. Tanaka and Y. Senga (2005): Vicarious calibration of ADEOS-2 GLI visible to shortwave infrared bands using global datasets. IEEE Trans. Geosci. and Remote. Sens., 43, No. 7, 1571–1584.CrossRefGoogle Scholar
  30. Nakajima, T. Y., T. Nakajima, M. Nakajima, H. Fukushima, M. Kuji, A. Uchiyama and M. Kishino (1998): Optimization of the Advanced Earth Observing Satellite II Global Imager Channels by use of Radiative Transfer Calculations. Applied Optics, 37(15), 3149.CrossRefGoogle Scholar
  31. Neveux, J. and F. Lantoine (1993): Spectrofluorometric assays of chlorophylls and phaeopigments using the least-squares approximation techniques. Deep-Sea Res. I, 40, 1747–1765.CrossRefGoogle Scholar
  32. O’Reilly, J. E., S. Maritorena, B. G. Mitchell, D. A. Siegel, K. L. Carder, S. A. Garver, M. Kahru and C. McClain (1998): Ocean color chlorophyll algorithms for SeaWiFS. J. Geophys. Res., 103, 24937–24953.Google Scholar
  33. Patt, F. S., R. A. Barnes, R. E. Eplee, Jr., B. A. Franz, W. D. Robinson, G. C. Feldman, S. W. Bailey, J. Gales, P. J. Werdell, M. Wang, R. Frouin, R. P. Stumpf, R. A. Arnone, R. W. Gould, Jr., P. M. Martinolich, V. Ransibrahmanakul, J. E. O’Reilly and J. A. Yoder (2003): Algorithm Updates for the Fourth SeaWiFS Data Reprocessing. NASA Tech. Memo. 2003-206892, Vol. 22, ed. by S. B. Hooker and E. R. Firestone, NASA Goddard Space Flight Center, Greenbelt, MD, U.S.A., 74 pp.Google Scholar
  34. Shimada, M., H. Oaku, Y. Mitomi, H. Murakami, A. Mukaida, Y. Nakamura, J. Ishizaka, H. Kawamura, T. Tanaka, M. Kishino and H. Fukushima (1998): Calibration and validation of the ocean color version-3 product from ADEOS OCTS. J. Oceanogr., 54(5), 401–416.Google Scholar
  35. Suzuki, R. and T. Ishimaru (1990): An improved method for the determination of phytoplankton chlorophyll using N, N-Dimethylformamide. J. Oceanogr. Soc. Japan, 46, 190–194.CrossRefGoogle Scholar
  36. Tanaka, A., M. Kishino, R. Doerffer, H. Schiller, T. Oishi and T. Kubota (2004): Development of a neural network algorithm for retrieving concentrations of chlorophyll, suspended matter and yellow substance from radiance data of the ocean color and temperature scanner. J. Oceanogr., 60(3), 519–530.CrossRefGoogle Scholar
  37. Tanaka, A., H. Sasaki, Y. Toke, E. Siswanto, C. K. Tan, A. Wakamatsu and J. Ishizaka (2006): Developing an in-water algorithm for GLI using neural network technique with optical model based on optical properties in East China Sea, Ariake Sound and Isahaya Bay. J. Oceanogr. (submitted).Google Scholar
  38. Tanaka, K., S. Kurihara and Y. Okamura (2005): The Sensor Characterization of Global Imager (GLI) on ADEOS-II Satellite, Vol. J88-B, No. 1, 151–157 (in Japanese).Google Scholar
  39. Thuillier, G., M. Hers, P. C. Simon, D. Labs, H. Mandel, D. Gillotay and T. Foujols (2003): The solar spectral inradiance from 200 to 2400 nm as measured by the Solspec spectrometer from the Atlas and Eureca missions. Solar Physics, 214(1), 1–22.CrossRefGoogle Scholar
  40. Toratani, M., H. Fukushima, H. Murakami and H. Kobayashi (2005): Atmospheric correction scheme for GLI in consideration of absorptive aerosol. Proc. SPIE, Conf. Active and Passive Remote Sensing of the Oceans, Vol. 5656, 45–53.Google Scholar
  41. Toratani, M., H. Fukushima, H. Murakami and A. Tanaka (2006): Atmospheric correction scheme for GLI with absorptive aerosol correction. J. Oceanogr. (submitted).Google Scholar
  42. Werdell, P. J. and S. W. Bailey (2005): An improved bio-optical data set for ocean color algorithm development and satellite data product validation. Remote Sensing of Environment, 98(1), 122–140.CrossRefGoogle Scholar
  43. Xiong, X., K. Chiang, J. Esposito, B. Guenther and W. L. Barnes (2003): MODIS on-orbit calibration and characterization. Metrologia, 40 S89–S92.CrossRefGoogle Scholar
  44. Yoshida, M., H. Murakami, Y. Mitomi, M. Hori, K. J. Thome, D. K. Clark and H. Fukushima (2005): Vicarious calibration of GLI by ground observation data. IEEE, Trans. Geosci. Remote Sens., 43(10), 2167–2176.CrossRefGoogle Scholar

Copyright information

© The Oceanographic Society of Japan/TERRAPUB/Springer 2006

Authors and Affiliations

  • Hiroshi Murakami
    • 1
    Email author
  • Kosei Sasaoka
    • 2
  • Kohtaro Hosoda
    • 1
  • Hajime Fukushima
    • 3
  • Mitsuhiro Toratani
    • 3
  • Robert Frouin
    • 4
  • B. Greg Mitchell
    • 4
  • Mati Kahru
    • 4
  • Pierre-Yves Deschamps
    • 5
  • Dennis Clark
    • 6
  • Stephanie Flora
    • 7
  • Motoaki Kishino
    • 8
  • Sei-Ichi Saitoh
    • 9
  • Ichio Asanuma
    • 10
  • Akihiko Tanaka
    • 11
  • Hiroaki Sasaki
    • 11
  • Katsumi Yokouchi
    • 12
  • Yoko Kiyomoto
    • 13
  • Hiroaki Saito
    • 14
  • Cécile Dupouy
    • 15
  • Absornsuda Siripong
    • 16
  • Satsuki Matsumura
    • 16
  • Joji Ishizaka
    • 17
  1. 1.Earth Observation Research and Application CenterJAXAHarumi, Chuo-ku, TokyoJapan
  2. 2.Frontier Research Center for Global ChangeJAMSTECShowa-machi, Kanazawa-ku, YokohamaJapan
  3. 3.School of High-Technology for Human WelfareTokai UniversityNumazu, ShizuokaJapan
  4. 4.Scripps Institution of OceanographyUCSDLa JollaU.S.A.
  5. 5.Laboratoire d’Optique AtmosphériqueUniversité des Sciences et Technologies de LilleVilleneuve d’Asq. CedexFrance
  6. 6.National Oceanic and Atmospheric AdministrationNational Environmental Satellite ServiceWashingtonU.S.A.
  7. 7.Moss Landing Marine LabsMoss LandingU.S.A.
  8. 8.Marine ScienceTokyo University of Marine Science and TechnologyKohnan, Minato-ku, TokyoJapan
  9. 9.Fisheries Sciences and Faculty of FisheriesHokkaido UniversityHakodateJapan
  10. 10.Tokyo University of Information SciencesYato-cho, Wakaba-ku, ChibaJapan
  11. 11.Nagasaki Industrial Promotion FoundationDejima-machi, NagasakiJapan
  12. 12.Fisheries AgencyKasumigaseki, Chiyoda-ku, TokyoJapan
  13. 13.Seikai National Fisheries Research InstituteFisheries Research AgencyTaira-machi, NagasakiJapan
  14. 14.Tohoku National Fisheries Research InstituteFisheries Research AgencyNiihama, Shiogama, MiyagiJapan
  15. 15.IRD UR103 CAMELIA, Centre d’Océanologie de MarseilleMarseilleFrance
  16. 16.Marine Science Department Faculty of ScienceChulalongkorn UniversityBangkokThailand
  17. 17.Faculty of FisheriesNagasaki UniversityBunkyo-machi, NagasakiJapan

Personalised recommendations