Skip to main content

Advertisement

Log in

Numerical study of the meridional overturning circulation with “mixing hotspots” in the Pacific Ocean

  • Original Article
  • Published:
Journal of Oceanography Aims and scope Submit manuscript

Abstract

Using an idealized ocean general circulation model, we examine the effect of “mixing hotspots” (localized regions of intense diapycnal mixing) predicted based on internal wave-wave interaction theory (Hibiya et al., 2006) on the meridional overturning circulation of the Pacific Ocean. Although the assumed diapycnal diffusivity in the mixing hotspots is a little larger than the predicted value, the upwelling in the mixing hotspots is not sufficient to balance the deep-water production; out of 17 Sv of the downwelled water along the southern boundary, only 9.2 Sv is found to upwell in the mixing hotspots. The imbalance as much as 7.8 Sv is compensated by entrainment into the surface mixed layer in the vicinity of the downwelling region. As a result, the northward transport of the deep water crossing the equator is limited to 5.5 Sv, much less than estimated from previous current meter moorings and hydrographic surveys. One plausible explanation for this is that the magnitude of the meridional overturning circulation of the Pacific Ocean has been overestimated by these observations. We raise doubts about the validity of the previous ocean general circulation models where diapycnal diffusivity is assigned ad hoc to attain the current magnitude suggested from current meter moorings and hydrographic surveys.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Adcroft, A., J. R. Scott and J. Marotzke (2001): Impact of geothermal heating on the global ocean circulation. Geophys. Res. Lett., 28, 1735–1738.

    Article  Google Scholar 

  • Bleck, R., C. Rooth, D. Hu and L. T. Smith (1992): Salinity-driven thermocline transients in a wind-and thermohaline-forced isopycnic coordinate model of the North Atlantic. J. Phys. Oceanogr., 22, 1486–1505.

    Article  Google Scholar 

  • Bryan, F. (1987): Parameter sensitivity of primitive equation ocean general circulation models. J. Phys. Oceanogr., 17, 970–985.

    Article  Google Scholar 

  • Brydon, D., S. Sun and R. Bleck (1999): A new approximation of the equation of state for seawater, suitable for numerical ocean models. J. Geophys. Res., 104, 1537–1540.

    Article  Google Scholar 

  • Cummins, P. F., G. Holloway and A. E. Gargett (1990): Sensitivity of the GFDL ocean general circulation model to a parameterization of vertical diffusion. J. Phys. Oceanogr., 20, 817–830.

    Article  Google Scholar 

  • Gaspar, P. (1988): Modeling the seasonal cycle of the upper ocean. J. Phys. Oceanogr., 18, 161–180.

    Article  Google Scholar 

  • Gregg, M. C. (1987): Diapycnal mixing in the thermocline: A review. J. Geophys. Res., 92, 5249–5286.

    Google Scholar 

  • Gregg, M. C. (1989): Scaling turbulent dissipation in the thermocline. J. Geophys. Res., 94, 9686–9698.

    Article  Google Scholar 

  • Griffies, S. M., R. C. Pacanowski and R. Hallberg (2000): Spurious diapycnal mixing associated with advection in a z-coordinate ocean model. Mon. Wea. Rev., 128, 538–564.

    Article  Google Scholar 

  • Hasumi, H. and N. Suginohara (1999a): Effects of locally enhanced vertical diffusivity over rough bathymetry on the world ocean circulation. J. Geophys. Res., 104, 23367–23374.

    Google Scholar 

  • Hasumi, H. and N. Suginohara (1999b): Atlantic deep circulation controlled by heating in the Southern Ocean. Geophys. Res. Lett., 26, 1873–1876.

    Article  Google Scholar 

  • Hibiya, T. and M. Nagasawa (2004): Latitudinal dependence of diapycnal diffusivity in the thermocline estimated using a finescale parameterization. Geophys. Res. Lett., 31, L01301, doi:10.1029/2003GL017998.

  • Hibiya, T., Y. Niwa, K. Nakajima and N. Suginohara (1996): Direct numerical simulation of the roll-off range of internal wave shear spectra in the ocean. J. Geophys. Res., 101, 14123–14129.

    Google Scholar 

  • Hibiya, T., Y. Niwa and K. Fujiwara (1998): Numerical experiments of nonlinear energy transfer within the oceanic internal wave spectrum. J. Geophys. Res., 103, 18715–18722.

    Google Scholar 

  • Hibiya, T., M. Nagasawa and Y. Niwa (2002): Nonlinear energy transfer within the oceanic internal wave spectrum at mid and high latitudes. J. Geophys. Res., 107, 3207, doi:10.1029/2002JC001376.

    Article  Google Scholar 

  • Hibiya, T., M. Nagasawa and Y. Niwa (2006): Global mapping of diapycnal diffusivity in the deep ocean based on the results of expendable current profiler (XCP) surveys. Geophys. Res. Lett., 33, L03611, doi: 10.1029/2005GL025218.

  • Huang, R. X. (1999): Mixing and energetics of the oceanic thermohaline circulation. J. Phys. Oceanogr., 29, 727–743.

    Article  Google Scholar 

  • Jackett, D. R. and T. J. McDougall (1995): Minimal adjustment of hydrographic profiles to achieve static stability. J. Atmos. Oceanic Technol., 12, 381–389.

    Article  Google Scholar 

  • Johnson, G. C. and J. M. Toole (1993): Flow of deep and bottom waters in the Pacific at 10°N. Deep-Sea Res., 40, 371–394.

    Article  Google Scholar 

  • Johnson, G. C., D. L. Rudnick and B. A. Taft (1994): Bottom water variability in the Samoa Passage. J. Mar. Res., 52, 177–196.

    Article  Google Scholar 

  • Ledwell, J. R., A. J. Watson and C. S. Law (1993): Evidence for slow mixing across the pycnocline from an open-ocean tracer release experiment. Nature, 364, 701–703.

    Article  Google Scholar 

  • Ledwell, J. R., E. T. Montgomery, K. L. Polzin, L. C. St. Laurent, R. W. Schmitt and J. M. Toole (2000): Evidence for enhanced mixing over rough topography in the abyssal ocean. Nature, 403, 179–182.

    Article  Google Scholar 

  • Levitus, S. and T. P. Boyer (1994): World Ocean Atlas 1994 Vol. 4, Temperature. NOAA Atlas NESDIS, U.S. Dep. of Commerce, Washington, D.C., 117 pp.

    Google Scholar 

  • Levitus, S., R. Burgett and T. P. Boyer (1994): World Ocean Atlas 1994 Vol. 3, Salinity. NOAA Atlas NESDIS, U.S. Dep. of Commerce, Washington, D.C., 99 pp.

    Google Scholar 

  • Marotzke, J. (1997): Boundary mixing and the dynamics of three-dimensional thermohaline circulations. J. Phys. Oceanogr., 27, 1713–1728.

    Article  Google Scholar 

  • McDermott, D. A. (1996): The regulation of northern overturning by southern hemisphere winds. J. Phys. Oceanogr., 26, 1234–1255.

    Article  Google Scholar 

  • McDougall, T. J. and W. K. Dewar (1998): Vertical mixing and cabbeling in layered models. J. Phys. Oceanogr., 28, 1458–1480.

    Article  Google Scholar 

  • Munk, W. (1966): Abyssal recipes. Deep-Sea Res., 13, 707–730.

    Google Scholar 

  • Munk, W. and C. Wunsch (1998): Abyssal recipes II, Energetics of tidal and wind mixing. Deep-Sea Res., 45, 1977–2010.

    Article  Google Scholar 

  • Nagasawa, M., Y. Niwa and T. Hibiya (2000): Spatial and temporal distribution of the wind-induced internal wave energy available for deep water mixing in the North Pacific. J. Geophys. Res., 105, 13933–13943.

    Google Scholar 

  • Nagasawa, M., T. Hibiya, Y. Niwa, M. Watanabe, Y. Isoda, S. Takagi and Y. Kamei (2002): Distribution of fine-scale shear in the deep waters of the North Pacific obtained using expendable current profilers. J. Geophys. Res., 107, 3221, doi:10.1029/2002JC001376.

    Article  Google Scholar 

  • Niwa, Y. and T. Hibiya (2001a): Numerical study of the spatial distribution of the M2 internal tide in the Pacific Ocean. J. Geophys. Res., 106, 22441–22449.

    Google Scholar 

  • Niwa, Y. and T. Hibiya (2001b): Spatial distribution of the M2 internal tide in the North Pacific predicted using a three-dimensional numerical model. J. Geod. Soc. Jpn., 47, 711–718.

    Google Scholar 

  • Park, Y.-G. and K. Bryan (2000): Comparison of thermally driven circulations from a depth-coordinate model and an isopycnal-layer model. Part I: Scaling-law sensitivity to vertical diffusivity. J. Phys. Oceanogr., 30, 590–605.

    Article  Google Scholar 

  • Polzin, K. L., J. M. Toole, J. R. Ledwell and R. W. Schmitt (1997): Spatial variability of turbulent mixing in the abyssal ocean. Science, 276, 93–96.

    Article  Google Scholar 

  • Roemmich, D., S. Hautala and D. L. Rudnick (1996): Northward abyssal transport through the Samoan passage and adjacent regions. J. Geophys. Res., 101, 14039–14055.

    Google Scholar 

  • Rudnick, D. L. (1997): Direct velocity measurements in the Samoan Passage. J. Geophys. Res., 102, 3293–3302.

    Article  Google Scholar 

  • Saenko, O. A. and W. J. Merryfield (2005): On the effect of topographically enhanced mixing on the global ocean circulation. J. Phys. Oceanogr., 35, 826–834.

    Article  Google Scholar 

  • Schmitz, W. J., Jr. (1995): On the interbasin-scale thermohaline circulation. Rev. Geophys., 33, 151–173.

    Article  Google Scholar 

  • Scott, J. R. and J. Marotzke (2002): The location of diapycnal mixing and the meridional overturning circulation. J. Phys. Oceanogr., 32, 3578–3595.

    Article  Google Scholar 

  • Scott, J. R., J. Marotzke and A. Adcroft (2001): Geothermal heating and its influence on the meridional overturning circulation. J. Geophys. Res., 106, 31141–31154.

    Google Scholar 

  • Simmons, H. L., S. R. Jayne, L. C. St. Laurent and A. J. Weaver (2004): Tidally driven mixing in a numerical model of the ocean general circulation. Ocean. Modell., 6, 245–263.

    Article  Google Scholar 

  • Sun, S., R. Bleck, C. Rooth, J. Dukowicz, E. Chassignet and P. Killworth (1999): Inclusion of thermobaricity in isopycnic-coordinate ocean models. J. Phys. Oceanogr., 29, 2719–2729.

    Article  Google Scholar 

  • Toggweiler, J. R. and B. Samuels (1995): Effect of Drake Passage on the global thermohaline circulation. Deep-Sea Res., 42, 477–500.

    Article  Google Scholar 

  • Toggweiler, J. R. and B. Samuels (1998): On the ocean’s large-scale circulation near the limit of no vertical mixing. J. Phys. Oceanogr., 28, 1832–1852.

    Article  Google Scholar 

  • Tsujino, H., H. Hasumi and N. Suginohara (2000): Deep Pacific circulation controlled by vertical diffusivity at the lower thermocline depths. J. Phys. Oceanogr., 30, 2853–2865.

    Article  Google Scholar 

  • Welander, P. (1971): The thermocline problem. Philos. Trans. Roy. Soc. London, 270A, 415–421.

    Google Scholar 

  • Wijffels, S. E., J. M. Toole, H. L. Bryden, R. A. Fine, W. J. Jenkins and J. L. Bullister (1996): The water masses and circulation at 10°N in the Pacific. Deep-Sea Res., 43, 501–544.

    Article  Google Scholar 

  • Zhang, J., R. Schmitt and R. X. Huang (1999): The relative influence of diapycnal mixing and hydrologic forcing on the stability of the thermohaline circulation. J. Phys. Oceanogr., 29, 1096–1108.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Takahiro Endoh.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Endoh, T., Hibiya, T. Numerical study of the meridional overturning circulation with “mixing hotspots” in the Pacific Ocean. J Oceanogr 62, 259–266 (2006). https://doi.org/10.1007/s10872-006-0050-x

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10872-006-0050-x

Keywords

Navigation