Skip to main content
Log in

Size-Fractionated Primary Production Estimated by a Two-Phytoplankton Community Model Applicable to Ocean Color Remote Sensing

Journal of Oceanography Aims and scope Submit manuscript

Abstract

In order to estimate primary production from ocean color satellite data using the Vertical Generalized Production Model (VGPM; Behrenfeld and Falkowski, 1997), we propose a two-phytoplankton community model. This model is based on the two assumptions that changes in chlorophyll concentration result from changes of large-sized phytoplankton abundance, and chlorophyll specific productivity of phytoplankton tends to be inversely proportional to phytoplankton size. Based on the analysis of primary production data, P B opt , which was one parameter in the VGPM, was modeled as a function of sea surface temperature and sea surface chlorophyll concentration. The two-phytoplankton community model incorporated into the VGPM gave good estimates in a relatively high productive area. Size-fractionated primary production was estimated by the two-phytoplankton community model, and P B opt of small-sized phytoplankton was 4.5 times that of large-sized phytoplankton. This result fell into the ranges observed during field studies.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price includes VAT (France)

Instant access to the full article PDF.

Institutional subscriptions

References

  • Balch, W. M. and C. F. Byrne (1994): Factors affecting the estimate of primary production from space. J. Geophys. Res., 99, 7555–7570.

    Article  Google Scholar 

  • Behrenfeld, M. J. and P. G. Falkowski (1997): Photosynthetic rates derived from satellite-based chlorophyll concentration. Limnol. Oceanogr., 42, 1–20.

    Google Scholar 

  • Behrenfeld, M. J., E. Maranon, D. A. Siegel and S. B. Hooker (2002): Photoacclimaton and nutrient-based model of light-saturated photosynthesis for quantifying oceanic primary production. Mar. Ecol. Prog. Ser., 228, 103–117.

    Google Scholar 

  • Chisholm, S. W. (1992): Phytoplankton size. p. 213–237. In Primary Productivity and Biogeochemical Cycles in the Sea, ed. by P. G. Falkowski and A. D. Woodhead, Plenum, New York.

    Google Scholar 

  • Eppley, R. W. (1972): Temperature and phytoplankton growth in the sea. Fish. Bull., 70, 1063–1085.

    Google Scholar 

  • Furnas, M. J. and A. W. Mitchell (1988): Photosynthetic characteristics of Coral Sea picoplankton (<2 µm size fraction). Biol. Oceanogr., 5, 163–182.

    Google Scholar 

  • Hama, T., T. Miyazaki, Y. Ogawa, T. Iwakuma, M. Takahashi, A. Otsuki and S. Ichimura (1983): Measurement of photosynthetic production of a marine phytoplankton population using a stable 13C isotope. Mar. Biol., 73, 31–36.

    Article  Google Scholar 

  • Harrison, W. G. and L. J. E. Wood (1988): Inorganic nitrogen uptake by marine picoplankton: evidence for size partitioning. Limnol. Oceanogr., 33, 468–475.

    Google Scholar 

  • Hashimoto, S. and A. Shiomoto (2000): High-west and low-east in April and no trend in August in chlorophyll a concentration and standing stock in the Subarctic Pacific in 1999. Bull. Jpn. Soc. Fish. Oceanogr., 64, 161–172.

    Google Scholar 

  • Joint, I. R. (1986): Physiological ecology of picoplankton in various oceanographic provinces. In Photosynthetic Picoplankton, ed. by T. Platt and W. K. W. Li, Can. Bull. Fish. Aquat. Sci., 214, 287–309.

  • Kasai, H., H. Saito and A. Tsuda (1998): Estimation of standing stock of chlorophyll a and primary production from remote-sensed ocean color in the Oyashio Region, the Western Subarctic Pacific, during the spring bloom in 1997. J. Oceanogr., 54, 527–537.

    Google Scholar 

  • Lalli, M. L. and T. R. Parsons (1997): Biological Oceanography: An Introduction. 2nd ed., Butterworth Heinemann, Oxford, 314 pp.

    Google Scholar 

  • Malone, T. C. (1980): Algal size. p. 433–463. In The Physiological Ecology of Phytoplankton, ed. by I. Morris, Blackwell, Oxford.

    Google Scholar 

  • Morel, A. (1991): Light and marine photosynthesis: a spectral model with geochemical and climatological implications. Prog. Oceanogr., 26, 263–306.

    Article  Google Scholar 

  • Odate, T. (1996): Abundance and size composition of the summer phytoplankton communities in the western North Pacific Ocean, the Bering Sea, and the Gulf of Alaska. J. Oceanogr., 52, 335–351.

    Google Scholar 

  • Odate, T. and Y. Maita (1988/1989): Regional variation in the size composition of phytoplankton communities in the Western North Pacific Ocean, spring 1985. Biol. Oceanogr., 6, 65–77.

    Google Scholar 

  • Platt, T. and S. Sathyendranath (1988): Oceanic primary production: Estimation by remote sensing at local and regional scales. Science, 241, 1613–1620.

    Google Scholar 

  • Platt, T., D. V. Subba Rao and B. Irwin (1983): Photosynthesis of picoplankton in the oligotrophic ocean. Nature, 301, 702–704.

    Article  Google Scholar 

  • Raimbault, P., M. Rodier and I. Taupier-Letage (1988): Size fraction of phytoplankton in the Ligurian Sea and the Algerian Basin (Mediterranean Sea): size distribution versus total concentration. Mar. Microb. Food Webs, 3, 1–7.

    Google Scholar 

  • Saijo, Y. and K. Takesue (1965): Further studies of the size distribution of photosynthesizing phytoplankton in the Indian Ocean. J. Oceanogr. Soc. Japan, 20, 264–271.

    Google Scholar 

  • Saito, H., H. Kasai, M. Kashiwai, Y. Kawasaki, T. Kono, S. Taguchi and A. Tsuda (1998): General description of seasonal variations in nutrients, chlorophyll a, and netplankton biomass along the A-line transect, western subarctic Pacific, from 1990 to 1994. Bull. Hokkaido Natl. Fish. Res. Inst., 62, 1–62.

    Google Scholar 

  • Shiomoto, A. and S. Hashimoto (2000): Comparison of east and west chlorophyll a standing stock and oceanic habitat along the Transition Domain of the North Pacific. J. Plankton Res., 22, 1–14.

    Article  Google Scholar 

  • Shiomoto, A. and S. Matsumura (1992): Primary productivity in a cold water mass and the neighborhood area occurring off Enshu-Nada in the late summer of 1989. J. Oceanogr., 48, 105–115.

    Google Scholar 

  • Shiomoto, A., K. Sasaki, T. Shimoda and S. Matsumura (1994): Primary productivity in the offshore Oyashio in the spring and summer 1990. J. Oceanogr., 50, 209–222.

    Google Scholar 

  • Shiomoto, A., K. Sasaki and T. Shimoda (1996): Primary production and contribution “new” production in the warm-core ring and the cold streamer off Sanriku in May 1990. La mer., 34, 1–9.

    Google Scholar 

  • Shiomoto, A., K. Tadokoro, K. Monaka and M. Nanba (1997): Productivity of picoplankton compared with that of larger phytoplankton in the subarctic region. J. Plankton Res., 19, 907–916.

    Google Scholar 

  • Shiomoto, A., S. Kawaguchi, K. Imai and Y. Tsuruga (1998a): Chla-specific productivity of picophytoplankton not higher than that of larger phytoplankton off the South Shetland Islands in summer. Polar Biol., 19, 361–364.

    Article  Google Scholar 

  • Shiomoto, A., S. Hashimoto and T. Murakami (1998b): Primary productivity and solar radiation off Sanriku in May 1997. J. Oceanogr., 55, 539–544.

    Google Scholar 

  • Shiomoto, A., Y. Ishida, M. Tamaki and Y. Yamanaka (1998c): Primary production and chlorophyll a in the northwestern Pacific Ocean in summer. J. Geophys. Res., 103, 24651–24661.

    Article  Google Scholar 

  • Smith, J. C., T. Platt, W. K. W. Li, E. P. W. Horne, W. G. Harrison, D. V. Subba Rao and B. D. Irwin (1985): Arctic marine photoautotrophic picoplankton. Mar. Ecol. Prog. Ser., 20, 207–220.

    Google Scholar 

  • Steemann Nielsen, E. (1952): The use of radio-active carbon (C14) for measuring organic production in the sea. J. Cons. Inst. Explor. Mer., 18, 117–140.

    Google Scholar 

  • Takahashi, M. and P. K. Bienfang (1983): Size structure of phytoplankton biomass and photosynthesis in subtropical Hawaiian waters. Mar. Biol., 76, 203–211.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Takahiko Kameda.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kameda, T., Ishizaka, J. Size-Fractionated Primary Production Estimated by a Two-Phytoplankton Community Model Applicable to Ocean Color Remote Sensing. J Oceanogr 61, 663–672 (2005). https://doi.org/10.1007/s10872-005-0074-7

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10872-005-0074-7

Keywords

Navigation