Journal of Oceanography

, Volume 61, Issue 1, pp 109–113 | Cite as

Periodic Forcing and ENSO Suppression in the Cane-Zebiak Model



The effect of a periodic forcing on the intensity of El Nino-Southern Oscillation (ENSO) is studied using the Cane-Zebiak model. With a basic seasonal climate close to the present, ENSO can be suppressed by a substantially enhanced seasonal external equatorial wind, which could be induced by monsoon forcing. ENSO suppression is usually more effective for an unstable self-exciting ENSO than for a stable stochastic-exciting ENSO. In addition, ENSO also tends to be suppressed by sufficiently strong periodic forcings of longer periods. The suppression of ENSO seems to be related to the nonlinear mechanism of frequency entrainment. These conclusions are in qualitative agreement with previous studies of conceptual ENSO models, although the Cane-Zebiak model shows a much more complicated dependence of the amplitude of ENSO on periodic forcing.


Period forcing ENSO frequency entrainment Cane-Zebiak model 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Barnett, T. P. et al. (1989): The effect of Eurasian snow cover on regional and global climate variations. J. Atmos. Sci., 48, 661–685.Google Scholar
  2. Battisti, D. S. and A. C. Hirst (1989): Interannual variability in a tropical atmosphere-ocean model: influence of the basic state, ocean geometry and nonlinearity. J. Atmos. Sci., 46, 1687–1708.Google Scholar
  3. Battisti, D. S. and E. S. Sarachik (1995): Understanding and predicting ENSO. J. Geophys. Res., 33,Suppl., 1367–1376.Google Scholar
  4. Bjerkness, J. (1969): Atmospheric teleconnection from equatorial Pacific. Mon. Wea. Rev., 97, 163.Google Scholar
  5. Chang, C.-P. and T. Li (2000): A theory for the tropospheric biennial oscillation. J. Atmos. Sci., 57, 2209–2224.Google Scholar
  6. Chang, P., B. Wang, T. Li and L. Ji (1994): Interactions between the seasonal cycle and the southern oscillation—frequency entrainment and chaos in a coupled ocean-atmosphere model. Geophys. Res. Lett., 21, 2817–2820.Google Scholar
  7. Chung, C. and S. Nigam (1999): Asian summer monsoon-ENSO feedback on the Cane-Zebiak model. J. Climate, 12, 2782–2807.Google Scholar
  8. Clement, A. C., R. Seager and M. A. Cane (1999): Oribital controls on ENSO and tropical climate. Paleoceanography, 14, 441–456.Google Scholar
  9. Clement, A. C., R. Seager and M. A. Cane (2000): Suppression of El Nino during the mid-Holocene by changes in the Earth’s orbit. Paleoceanography, 15, 731–737.Google Scholar
  10. Fedorov, A. and G. Philander (2000): Is El Nino changing? Science, 288, 1997–2002.PubMedGoogle Scholar
  11. Jin, F. F. (1997): An equatorial ocean recharge paradigm for ENSO. Part I: Conceptual model. J. Atmos. Sci., 54, 811–847.Google Scholar
  12. Lau, K. M. (1981): Oscillations in a simple equatorial climate system. J. Atmos. Sci., 38, 248–261.Google Scholar
  13. Liu, Z. (2002): A simple model study of ENSO suppression by external periodic forcing. J. Climate, 15, 1088–1098.Google Scholar
  14. Liu, Z., R. Jacobs, J. Kutzbach, S. Harrison and J. Anderson (1999): Monsoon impact on El Nino variability in the early Holocene. PAGE Newsletter, 7, No.2, 16–17.Google Scholar
  15. Liu, Z., J. Kutzbach and L. Wu (2000): Modeling climatic shift of El Nino variability in the Holoence. Geophys. Res. Lett., 27(15), 2265–2268.Google Scholar
  16. McCreary, J. P. and D. Anderson (1991): An overview of coupled ocean-atmosphere models of El Nino and the Southern Oscillation. J. Geophys. Res., 96,Suppl., 3125–3150.Google Scholar
  17. Neelin, J. D. (1991): The slow sea surface temperature mode and the fast-wave limit: analytic theory for tropical interannual oscillations and experiments in a hybridcoupled model. J. Atmos. Sci., 48, 584–606.Google Scholar
  18. Penland, C. and P. Sardeshmukh (1995): The optimal growth of the tropical sea surface temperature anomalies. J. Climate, 8, 1999–2024.Google Scholar
  19. Philander, S. G. H., T. Yamagata and R. C. Pacanowski (1984): Unstable air-sea interactions in the tropics. J. Atmos. Sci., 41, 604–613.Google Scholar
  20. Rodbell, D. T. et al. (1999): An ∼15,000-year record of El Nino-Driven Alluviation in southwestern Ecuador. Science, 283, 516–520.PubMedGoogle Scholar
  21. Sandweiss, D. et al. (1996): Geoarchaeological evidence from Peru for a 5000 years B.P. onset of El Nino. Science, 273, 1531–1533.Google Scholar
  22. Schopf, P. S. and M. J. Suarez (1990): Ocean wave dynamics and the timescale of ENSO. J. Phys. Ocean, 20, 629–645. 22.Google Scholar
  23. Suarez, M. J. and P. S. Schopf (1988): A delayed action oscillator for ENSO. J. Atmos. Sci., 45, 549–566.Google Scholar
  24. Tziperman, E., S. Zebiak and M. Cane (1997): Mechanisms of seasonal-ENSO interaction. J. Atmos. Sci., 54, 61–71.Google Scholar
  25. Wang, C. (2000): On the atmospheric responses to tropical Pacific heating during the mature phase of El Nino. J. Atmos. Sci., 57, 3767–3781.Google Scholar
  26. Wang, C. and R. H. Weisberg (1998): Climate variability of the coupled tropical-extratropical ocean-atmosphere system. Geophys. Res. Lett., 25, 3979–3982.Google Scholar
  27. Wyrtki, K. (1975): El Nino—The dynamic response of the equatorial Pacific Ocean to atmospheric forcing. J. Phys. Oceanogr., 5, 572–584.Google Scholar
  28. Zebiak, S. E. and M. A. Cane (1987): A model El Nino-Southern Oscillation. Mon. Wea. Rev., 115, 2262–2278.Google Scholar

Copyright information

© Springer Science+Business Media, Inc. 2005

Authors and Affiliations

  1. 1.Physical Oceanography LaboratoryOcean University of ChinaQingdaoP.R. China
  2. 2.Center for Climate ResearchUniversity of Wisconsin-MadisonU.S.A.

Personalised recommendations