Journal of Oceanography

, Volume 60, Issue 4, pp 743–750 | Cite as

Sub-Lethal Effects of Elevated Concentration of CO2 on Planktonic Copepods and Sea Urchins

  • Haruko Kurihara
  • Shinji Shimode
  • Yoshihisa Shirayama
Article

Abstract

Data concerning the effects of high CO2 concentrations on marine organisms are essential for both predicting future impacts of the increasing atmospheric CO2 concentration and assessing the effects of deep-sea CO2sequestration. Here we review our recent studies evaluating the effects of elevated CO2 concentrations in seawater on the mortality and egg production of the marine planktonic copepod, Acartia steueri, and on the fertilization rate and larval morphology of sea urchin embryos, Hemicentrotus pulcherrimus and Echinometra mathaei. Under conditions of +10,000 ppm CO2 in seawater (pH 6.8), the egg production rates of copepods decreased significantly. The survival rates of adult copepods were not affected when reared under increased CO2 for 8 days, however longer exposure times could have revealed toxic effects of elevated CO2 concentrations. The fertilization rate of sea urchin eggs of both species decreased with increasing CO2 concentration. Furthermore, the size of pluteus larvae decreased with increasing CO2 concentration and malformed skeletogenesis was observed in both larvae. This suggests that calcification is affected by elevated CO2 in the seawater. From these results, we conclude that increased CO2 concentration in seawater will chronically affect several marine organisms and we discuss the effects of increased CO2 on the marine carbon cycle and marine ecosystem.

Rising atmospheric CO2 concentration CO2 ocean sequestration biological impact sub-lethal effects egg production fertilization morphology copepods sea urchins 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Adams, E. E., J. A. Caulfield, H. J. Herzog and D. I. Auerbach (1997): Impacts of reduced pH from ocean disposal: sensi-tivity of zooplankton mortality to model parameters. Waste Manage., 17, 375–380.CrossRefGoogle Scholar
  2. Arrigo, K. R., D. H. Robinson, D. L. Worthen, R. B. Dunbar, G. R. DiTullio, M. VanWoert and M. P. Lizotte (1999): Phytoplankton community structure and the drawdown of nutrients and CO2 in the Southern Ocean. Science, 283, 365–367.CrossRefGoogle Scholar
  3. Austen, M. C., S. Widdicombe and N. Villano-Pitacco (1998): Effects of biological disturbances on diversity and struc-ture of meiobenthic nematode communities. Mar. Ecol. Prog. Ser., 174, 233–246.CrossRefGoogle Scholar
  4. Bamber, R. N. (1987): The effects of acidic seawater on young carpet-shell clams Venerupis decussata (L.) (Mollusca: Veneracea). J. Exp. Mar. Biol. Ecol., 108, 241–260.CrossRefGoogle Scholar
  5. Battle, M., M. L. Bender, P. P. Tans, J. W. C. White, J. T. Ellis, T. Conway and R. J. Francey (2000): Global carbon sinks and their variability inferred from atmospheric O2 and ??13 C. Science, 287, 2467–2470.CrossRefGoogle Scholar
  6. Bazzaz, F. A. (1990): The response of natural ecosystems to the rising global carbon dioxide levels. Ann. Rev. Ecol. Syst., 21, 167–196.CrossRefGoogle Scholar
  7. Benedetti-Cecchi, L. (2000): Predicting direct and indirect in-teractions during succession in a mid-littoral rocky shore assemblage. Ecological Monographs., 70, 45–72.CrossRefGoogle Scholar
  8. Broecker, W. S. (1997): Thermohaline circulation, the Achilles heel of our climate system: Will man-made CO 2 upset the current balance? Science, 278, 1582–1588.CrossRefGoogle Scholar
  9. Caulfield, J. A., E. E. Adams, D. I. Auerbach and H. J. Herzog (1997): Impacts of ocean disposal on marine life: II. Probabilistic plume exposure model used with a time-vary-ing dose-response analysis. Environ. Model Assess., 2, 345–353.CrossRefGoogle Scholar
  10. Fowler, S. W. and G. A. Knauer (1986): Role of large particles in the transport of elements and organic compounds through the oceanic water column. Prog. Oceanogr., 16, 147–194.CrossRefGoogle Scholar
  11. Gattuso, J.-P., M. Frankignoulle, I. Bourge, S. Romaine and R. W. Buddemeier (1998): Effect of calcium carbonate saturation of seawater in coral calcification. Glob. Planet. Change, 18, 37–46.CrossRefGoogle Scholar
  12. Grice, G. D., P. H. Wiebe and E. Hoagland (1973): Acid-iron waste as a factor affecting the distribution and abundance of zooplankton in the New York Bight. I. Laboratory stud-ies on the effects of acid waste on copepods. Est. Coast. Mar. Sci., 1, 45–50.CrossRefGoogle Scholar
  13. Heisler, N. (1993): Acid-base regulation. p. 343–378. In The Physiology of Fishes, ed. by D. H. Evans, CRC Press, Boca Raton.Google Scholar
  14. Herzog, H. J., E. E. Adams, D. Auerbach and J. Caulfield (1996): Environmental impacts of ocean disposal of CO 2. Energy Convers. Manage.,37(6–8), 999–1005.CrossRefGoogle Scholar
  15. Hochachka, P. W. and G. N. Somero (2002): Biochemical Adaptation: Mechanism and Process in Physiological Evolution. Oxford University Press, Oxford, 446 pp.Google Scholar
  16. Houghton, J. T., B. A. Callander and S. K. Varney (1992): Climate Change 1992: The Supplementary Report to the IPCC Scientific Assessment. Cambridge University Press, New York.Google Scholar
  17. Houghton, J. T., Y. Ding, D. J. Griggs, M. Noguer, P. J. Van der Linder and D. Xiaosu (2001): Climate Change 2001: The Scientific Basis. Cambridge University Press, New York.Google Scholar
  18. Huesemann, M. H., A. D. Skillman and E. A. Crecelius (2002): The inhibition of marine nitrification by ocean disposal of carbon dioxide. Mar. Poll. Bull., 44, 142–148.CrossRefGoogle Scholar
  19. Keeling, C. D. and T. P Whorf (1994): Atmospheric CO 2 records from sites in the SIO air sampling network. p. 16–26. In Trends’ 93: A Compendium of Data on Global Change, ed. by T. A. Boden, D. P. Kaiser, R. J. Sepanski and F. W. Stoss, Carbon Dioxide Information Analysis Center, Oak Ridge National Laboratory, Oak Ridge, Tenn.Google Scholar
  20. Keeling, R. F., S. C. Piper and M. Heimann (1996): Global and hemispheric CO 2 sink deduced from changes in atmospheric O2 concentration. Nature, 381, 218–221.CrossRefGoogle Scholar
  21. Kikkawa, T., J. Kita and A. Ishimatsu (2004): Comparison of the lethal effect of CO 2 and acidification on red sea bream (Pagrus major) during the early developmental stages. Mar. Pollut. Bull., 48, 108–110.CrossRefGoogle Scholar
  22. Knutzen, J. (1981): Effects of decreased pH on marine organisms. Mar. Pollut. Bull., 12, 25–29.CrossRefGoogle Scholar
  23. Kurihara, H. and Y. Shirayama (2004): Effects of increased at-mospheric CO 2 on sea urchin early development. Mar. Ecol. Prog. Ser. (in press).Google Scholar
  24. Kurihara, H., S. Shimode and Y. Shirayama (2004): Effects of raised CO2 concentration on the egg production rate and early development of two species of marine copepods [Acartia steueri and Acartia erythrae. Mar. Pollut. Bull. (in press).Google Scholar
  25. Kuwatani, Y. and T. Nishii (1969): Effects of pH of culture water on the growth of the Japanese pearl oyster. Bull. Jap. Soc. Fish. Oceanogr., 35(4), 342–350.CrossRefGoogle Scholar
  26. Legendre, L. and R. B. Rivkin (2002): Pelagic food webs: Re-sponses to environmental processes and effects on the environment. Ecol. Res., 17, 143–149.CrossRefGoogle Scholar
  27. Levinton, J. S. (1995): Marine Biology: Function, Biodiversity, Ecology. Oxford University Press, New York, 420 pp.Google Scholar
  28. Liro, C. R., E. E. Adams and H. J. Herzog (1992): Modeling the release of CO2 in the deep ocean. Energy Convers. Man-age., 33, 667–674.CrossRefGoogle Scholar
  29. Marchetti, C. (1977): On geoengineering and the CO2 prob-lem. Clim. Chang., 1, 59–68.CrossRefGoogle Scholar
  30. Morgan, I. J., D. G. McDonald and C. M. Wood (2001): The cost of living for freshwater fish in a warmer, more pol-luted world. Global Change Biol., 7, 345–355.CrossRefGoogle Scholar
  31. Nybakken, J. W. (2001): Deep sea biology. p. 133–178. In. Marine Biology: An Ecological Approach, 5th ed., Benjamin Cummings, San Francisco.Google Scholar
  32. Ohsumi, T. (1995): CO2 disposal options in the deep sea. Mar. Technol. Soc. J., 29(3), 58–66.Google Scholar
  33. Paine, R. T. (1966): Food web complexity and species diversity. Amer. Nat., 100, 65–75.CrossRefGoogle Scholar
  34. Paine, R. T. (1974): Intertidal community structure: experimen-tal studies on the relationship between a dominant competi-tor and its principal predator. Oecologia, 15, 93–120.CrossRefGoogle Scholar
  35. Parmesan, C. and G. Yohe (2003): A globally coherent finger-print of climate change impacts across natural systems. Nature, 421, 37–42.CrossRefGoogle Scholar
  36. Parson, E. A. and D. W. Keith (1998): Fossil fuel without CO2 emissions. Science, 282, 1053–1054.CrossRefGoogle Scholar
  37. Rhoads, D. C. and D. K. Young (1970): The influence of de-posit feeding organisms on sediment stability and commu-nity trophic structure. J. Mar. Res., 28(2), 150–178.Google Scholar
  38. Riebesell, U., D. A. Wolf-Gladrow and V. Smetacek (1993): Carbon dioxide limitation of marine phytoplankton growth rates. Nature, 361, 249–251.CrossRefGoogle Scholar
  39. Riebesell, U., I. Zondervan, B. Rost, P. D. Tortell, R. E. Zeebe and F. M. M. Morel (2000): Reduced calcification of ma-rine plankton in response to increased atmospheric CO2. Nature, 407, 364–367.CrossRefGoogle Scholar
  40. Rivkin, R. B. and L. Legendre (2002): Roles of food web and heterotrophic microbial processes in upper ocean biochem-istry: Global patterns and processes. Ecol. Res., 17, 151–159.CrossRefGoogle Scholar
  41. Root, T. L., J. T. Price, K. R. Hall, S. H. Schneider, C. Rosenzweig and J. A. Pounds (2003): Fingerprints of global warming on wild animals and plants. Nature, 421, 57–60.CrossRefGoogle Scholar
  42. Rose, D. C., G. W. Williams, T. A. Hollister and P. R. Parrish (1977): Method for determining acute toxicity of an acid waste and limiting permissible concentration at boundaries of an ocean mixing zone. Environ. Sci. Technol., 11(4), 367–371.CrossRefGoogle Scholar
  43. Sarmiento, J. L., T. M. Hughes, R. J. Stouffer and S. Manabe (1998): Simulated response of the ocean carbon cycle to anthropogenic climate warming. Nature, 393, 245–248.CrossRefGoogle Scholar
  44. Sarmiento, J. L., P. Monfray, E. Maier-Reimer, O. Aumont, R. J. Murnane and J. C. Orr (2000): Sea-air CO2 fluxes and carbon transport: A comparison of three ocean general cir-culation models. Global Biogeochem. Cycles, 14(4), 1267–1281.CrossRefGoogle Scholar
  45. Sebens, K. (1985): The ecology of the rocky subtidal zone. Amer. Sci., 73, 548–557.Google Scholar
  46. Sebens, K. (1986): Spatial relationships among encrusting ma-rine organisms in the New England subtidal zone. Ecol. Monogr., 56(1), 73–96.CrossRefGoogle Scholar
  47. Shirayama, Y. (1997): Biodiversity and biological impact of ocean disposal of carbon dioxide. Waste Manage., 17(5/6), 381–384.Google Scholar
  48. Takahashi, T., R. A. Feely, R. F. Weiss, R. H. Wanninkhof, D. W. Chipan, S. C. Sutherland and T. T. Takahashi (1997): Global air-sea flux of CO 2: An estimate based on measure-ments of sea-air pCO 2 difference. Proc. Natl. Acad. Sci. USA, 94, 8292–8299.CrossRefGoogle Scholar
  49. Tsuchiya, M. Y. and Y. Kurihara (1981): Effect of feeding be-haviour of macrobenthos on changes in environmental con-ditions of intertidal flats. J. Exp. Mar. Biol. Ecol., 44, 85–94.CrossRefGoogle Scholar
  50. Volk, T. and M. I. Hoffert (1985): Ocean carbon pumps: Analy-sis of relative strengths and efficiencies in ocean-driven atmospheric CO 2 changes. In The Carbon Cycle and At-mospheric CO 2: Natural Variations Archean to Present, ed. by E. T. Sundquist and W. S. Broecker, Geophys. Monogr. Ser., 32, p. 99–110, AGU, Washington, D.C.Google Scholar
  51. Watanabe, Y., H. Ishida, A. Yamaguchi and J. Ishizaka (2001): III-5 Effects of high concentration of CO 2 on deep-sea plankton. In CO 2 Ocean Sequestration and Its Biological Impacts, Bull. Jap. Soc. Scient. Fish., 67(4), p. 764–765 (in Japanese).CrossRefGoogle Scholar
  52. Wigley, T. M. L., R. Richels and J. A. Edmonds (1996): Eco-nomic and environmental choices in the stabilization of atmospheric CO 2 concentrations. Nature, 379, 240–243.CrossRefGoogle Scholar
  53. Wolf-Gladrow, D. A., U. Riebesell, S. Burkhardt and J. Bijma (1999): Direct effects of CO 2 concentration on growth and isotopic composition of marine plankton. Tellus, 51B, 461–476.CrossRefGoogle Scholar
  54. Yamada, Y. and T. Ikeda (1999): Acute toxicity of lowered pH to some oceanic zooplankton. Plankton Biol. Ecol., 46(1), 62–67.Google Scholar
  55. Zhang, X. and H. G. Dam (1997): Downward export of carbon by diel migrant mesozooplankton in the central equatorial Pacific. Deep-Sea Res. II., 44, 2191–2202.CrossRefGoogle Scholar

Copyright information

© The Oceanographic Society of Japan 2004

Authors and Affiliations

  • Haruko Kurihara
    • 1
  • Shinji Shimode
    • 2
  • Yoshihisa Shirayama
    • 1
  1. 1.Seto Marine Biological LaboratoryKyoto UniversityNishimuro, WakayamaJapan
  2. 2.Graduate School of Environmental and Information SciencesYokohama National UniversityHodogaya, YokohamaJapan

Personalised recommendations