Biological Impact of Elevated Ocean CO2 Concentrations: Lessons from Animal Physiology and Earth History

Abstract

CO2 currently accumulating in the atmosphere permeates into ocean surface layers, where it may impact on marine animals in addition to effects caused by global warming. At the same time, several countries are developing scenarios for the disposal of anthropogenic CO2 in the worlds' oceans, especially the deep sea. Elevated CO2 partial pressures (hypercapnia) will affect the physiology of water breathing animals, a phenomenon also considered in recent discussions of a role for CO2 in mass extinction events in earth history. Our current knowledge of CO2 effects ranges from effects of hypercapnia on acid-base regulation, calcification and growth to influences on respiration, energy turnover and mode of metabolism. The present paper attempts to evaluate critical processes and the thresholds beyond which these effects may become detrimental. CO2 elicits acidosis not only in the water, but also in tissues and body fluids. Despite compensatory accumulation of bicarbonate, acid-base parameters (pH, bicarbonate and CO2 levels) and ion levels reach new steady-state values, with specific, long-term effects on metabolic functions. Even though such processes may not be detrimental, they are expected to affect long-term growth and reproduction and may thus be harmful at population and species levels. Sensitivity is maximal in ommastrephid squid, which are characterized by a high metabolic rate and extremely pH-sensitive blood oxygen transport. Acute sensitivity is interpreted to be less in fish with intracellular blood pigments and higher capacities to compensate for CO2 induced acid-base disturbances than invertebrates. Virtually nothing is known about the degree to which deep-sea fishes are affected by short or long term hypercapnia. Sensitivity to CO2 is hypothesized to be related to the organizational level of an animal, its energy requirements and mode of life. Long-term effects expected at population and species levels are in line with recent considerations of a detrimental role of CO2 during mass extinctions in the earth's history. Future research is needed in this area to evaluate critical effects of the various CO2 disposal scenarios.

This is a preview of subscription content, access via your institution.

References

  1. Alvarado-Alvarez, R., M. C. Gould and I. L. Stephano (1996): Spawning, in vitro maturation and changes in oocyte elec-trophysiology induced by serotonin in Tivela stultorum. Biol. Bull., 190, 322–328.

    Article  Google Scholar 

  2. Anderson, M. E. (1990): Zoarcidae. p. 256–276. In Fishes of the Southern Ocean, ed. by O. Gon, P. C. Heemstra and J. L. B. Smith, Institute of Ichthyology, Grahamstown.

  3. Anderson, M. E. (1994): Systematics and Osteology of the Zoarcidae (Teleostei: Perdiformes). Ichthyol. Bull., 60, 120.

    Google Scholar 

  4. Auerbach, D., J. A. Caulfield, E. E. Adams and H. J. Herzog (1997): Impacts of ocean CO 2 disposal on marine life: I. A toxicological assessment integrating constant-concentration laboratory assay data with variable-concentration field exposure.Env. Model. Assessment, 2, 333–343.

    Article  Google Scholar 

  5. Bambach, R. K., A. H. Knoll and J. J. Sepkowski, Jr. (2002): Anatomical and ecological constraints on Phanerozoic animal diversity in the marine realm. PNAS, 99, 6845–6859.

    Article  Google Scholar 

  6. Bamber, R. N. (1987): The effects of acidic sea water in young carpet-shell clams, Venerupis decussata(L.) (Mollusca: Venracea). J. Exp. Mar. Biol. Ecol., 108, 241–260.

    Article  Google Scholar 

  7. Bamber, R. N. (1990): The effects of acidic sea water on three species of lamellibranch molluscs. J. Exp. Mar. Biol. Ecol.,143, 181–191.

    Article  Google Scholar 

  8. Barker, S. and H. Elderfield (2002): Foraminiferal calcification response to glacial-interglacial changes in atmosphericCO 2. Science, 297, 833–836.

    Article  Google Scholar 

  9. Berner, R. A. (2002): Examination of hypotheses for the Permo-Triassic boundary extinction by carbon cycle modeling. PNAS, 99, 4172–4177.

    Article  Google Scholar 

  10. Burleson, M. L. and N. J. Smatresk (2000): Branchial chemoreceptors mediate ventilatory response to hypercapnic acidosis in channel catfish. Comp. Biochem. Physiol. A, 125, 403–414.

    Article  Google Scholar 

  11. Cameron, J. N. and G. K. Iwama (1989): Compromises between ionic regulation and acid-base regulation in aquatic animals. Can. J. Zool., 67, 3078–3084.

    Article  Google Scholar 

  12. Childress, J. J. (1995): Are there physiological and biochemical adaptations of metabolism in deep-sea animals? Trends Ecol. Evolut., 10, 30–36.

    Article  Google Scholar 

  13. Childress J. J. and B. A. Seibel (1998): Life at stable low oxygen levels: adaptations of animals to oceanic oxygen minimum layers. J. Exp. Biol., 201, 1223–1232.

    Google Scholar 

  14. Childress, J. J., R. Lee, N. K. Sanders, H. Felbeck, D. Oros, A. Toulmond, M. C. K. Desbruyeres and J. Brooks (1993): In-organic carbon uptake in hydrothermal vent tubeworms facilitated by high environmental PCO 2. Nature, 362, 147–149.

    Article  Google Scholar 

  15. Claiborne, J. B., S. L. Edwards and A. I. Morrison-Shetlar (2002): Acid-base regulation in fishes: cellular and molecular mechanisms. J. Exp. Biol., 293(3), 302–319.

    Google Scholar 

  16. Cornette, J. L., B. S. Lieberman and R. H. Goldstein (2002): Documenting a significant relationship between macroevolutionary origination rates and Phanerozoic pCO 2 levels. PNAS, 99, 7832–7835.

    Article  Google Scholar 

  17. Crocker, C. E. and J. J. Cech (1996): The effects of hypercap-nia on the growth of juvenile white sturgeon, Acipenser transmontanus. Aquaculture, 147, 293–299.

    Article  Google Scholar 

  18. D'Avino, R. and R. DeLuca (2000): Molecular modelling of Trematomus newnesi Hb1: insights for a lowered oxygen affinity and lack of Root effect. Proteins, 39(2), 155–165.

    Article  Google Scholar 

  19. Desrosiers, R. R., J. Desilets and F. Dube (1996): Early devel-opmental events following fertilization in the giant scal-lop, Placopecten magellanicus. Can. J. Fish. Aquat. Sci., 53, 1382–1392.

    Article  Google Scholar 

  20. Dudley, R. (1998): Atmospheric oxygen, giant Palaeozoic insects and the evolution of aerial locomotor performance. J.Exp. Biol., 201, 1043–1050.

    Google Scholar 

  21. Edwards, S. L., J. B. Claiborne, A. I. Morrison-Shetlar and T. Toop (2001): Expression of Na + /H + exchanger mRNA in the gills of the Atlantic hagfish (Myxine glutinosa) in response to metabolic acidosis. Comp. Biochem. Physiol., 130, 81–91.

    Article  Google Scholar 

  22. Evans, D. H. (1984): The roles of gill permeability and transport mechanisms in euryhalinity. p. 239–283. In Fish Physi-ology, Vol. XA, ed. by W. S. Haar and D. J. Randall, Academic Press, New York.

    Google Scholar 

  23. Gage, J. D. and P. A. Tyler (1991): Deep Sea Biology. Cambridge University Press, New York.

    Book  Google Scholar 

  24. Goffredi, S. K. and J. J. Childress (2001): Activity and inhibitor sensitivity of ATPases in the hydrothermal vent tubeworm Riftia pachyptila: a comparative approach. Mar.Biol., 138(2), 259–265.

    Article  Google Scholar 

  25. Graham, M. S., R. L. Hädrich and G. L. Fletcher (1985): Hematology of three deep-sea fishes: a reflection of low metabolic rates. Comp. Biochem. Physiol. A, 80, 79–84.

    Article  Google Scholar 

  26. Grosell, M., C. N. Laliberte, S. Wood, F. B. Jensen and C. M. Wood (2001): Intestinal HCO 3 – secretion in marine teleost fish: evidence for an apical rather than basolateral Cl – /HCO 3– exchanger. Fish Physiol. Biochem., 24, 81–95.

    Article  Google Scholar 

  27. Hädrich, R. L. (1996): Perspective on deep sea fishes. p. 121–131. In Ocean Storage of Carbon Dioxide. Workshop 2--Environmental Impact, ed. by B. Ormerod and M. V. Angel, International Energy Agency Greenhouse Gas R&D Programm, Cheltenham, U.K.

  28. Haugan, P. M. and H. Drange (1996): Effects of CO 2 on the ocean environment. Energ. Convers. Manage., 37, 1019–1022.

    Article  Google Scholar 

  29. Heisler, N. (1986a): Acid-base regulation in fishes. p. 309–356. In Acid-base Regulation in Animals, ed. by N. Heisler, Elsevier Biomedical Press, Amsterdam.

    Google Scholar 

  30. Heisler, N. (1986b): Comparative aspects of acid-base regulation. P. 397–450. In Acid-base Regulation in Animals, ed. by N. Heisler, Elsevier Biomedical Press, Amsterdam.

    Google Scholar 

  31. Heisler, N. (1993): Acid-base regulation. p. 343–377. In The Physiology of Fishes, ed. by D. H. Evans, CRC Press Inc., Boca Raton (FL), U.S.A.

  32. Hylland, P., S. Milton, M. Pek, G. E. Nilsson and P. L. Lutz (1997): Brain Na + /K +-ATPase activity in two anoxia tolerant vertebrates: Crucian carp and freshwater turtle. Neurosci. Lett., 235(1–2), 89–92.

    Article  Google Scholar 

  33. Ingermann, R. L., M. Holcomb, M. L. Robinson and J. G. Cloud (2002): Carbon dioxide and pH affect sperm motility of white sturgeon (Acipenser transmontanus). J. Exp. Biol., 205, 2885–2890.

    Google Scholar 

  34. Ishimatsu, A. and J. Kita (1999): Effects of environmental hy-percapnia on fish. Jap. J. Ichthyol., 46, 1–13.

    Google Scholar 

  35. Ishimatsu, A., T. Kikkawa, M. Hayashi, K.-S. Lee and J. Kita (2004): Effects of CO 2 on marine fish: larvae and adults. J.Oceanogr., 60, this issue, 731–741.

    Article  Google Scholar 

  36. Iwama, G. K. and N. Heisler (1991): Effect of environmental water salinity on acid-base regulation during environmental hypercapnia in the rainbow trout (Oncorhynchus mykiss).J. Exp. Biol., 158, 1–18.

    Google Scholar 

  37. Jouve-Duhamel, A. and J. P. Truchot (1983): Ventilation on the shore crab Carcinus maenas as a function of ambient oxygen and carbon dioxide: Field and laboratory studies. J. Exp.Mar. Biol. Ecol., 70, 281–296.

    Article  Google Scholar 

  38. Knoll, A. K., R. K. Bambach, D. E. Canfield and J. P. Grotzinger (1996): Comparative earth history and late Permian mass extinction. Science, 273, 452–457.

    Article  Google Scholar 

  39. Kurihara, H., S. Shimode and Y. Shirayama (2004): Sub-lethal effects of elevated concentration of CO 2 on planktonic copepods and sea urchins. J. Oceanogr., 60, this issue, 743–750.

    Article  Google Scholar 

  40. Langenbuch, M. and H. O. Pörtner (2002): Changes in metabolic rate and N-excretion in the marine invertebrate Sipunculus nudus under conditions of environmental hypercapnia: identifying effective acid-base parameters. J. Exp. Biol., 205, 1153–1160.

    Google Scholar 

  41. Langenbuch, M. and H. O. Pörtner (2003): Energy budget of Antarctic fish hepatocytes (Pachycara brachycephalum and Lepidonotothen kempi) as a function of ambient CO 2: pH. dependent limitations of cellular protein biosynthesis? J. Exp. Biol., 206, 3895–3903.

    Article  Google Scholar 

  42. Larsen, B. K., H. O. Pörtner and F. B. Jensen (1997): Extra-and intracellular acid-base balance and ionic regulation in cod (Gadus morhua) during combined and isolated exposures to hypercapnia and copper. Mar. Biol., 128, 337–346.

    Article  Google Scholar 

  43. Lin, H., D. C. Pfeiffer, A. W. Vogl, J. Pau and D. J. Randall (1994): Immunolocalization of proton ATP-ase in the gill epithelia of rainbow trout. J. Exp. Biol., 195, 169–183.

    Google Scholar 

  44. Lutz, P. L. and G. E. Nilsson (1997): Contrasting strategies for anoxic brain survival--glycolysis up or down. J. Exp. Biol., 200, 411–419.

    Google Scholar 

  45. Marchetti, C. (1977): On geoengineering and the CO 2 problem. Climatic Change, 1, 59–68.

    Article  Google Scholar 

  46. Marchetti, C. (1979): Constructive solutions to the CO 2 problem. p. 299–311. In Man's Impact on Climate, ed. by W. Bach, J. Pankrath and W. Kellogg, Elsevier Science Publ., Amsterdam.

    Chapter  Google Scholar 

  47. McKendry, J. E., W. K. Milsom and S. F. Perry (2001): Branchial CO 2 receptors and cardiorespiratory adjustments during hypercarbia in Pacific spiny dogfish (Squalus acanthias). J. Exp. Biol., 204, 1519–1527.

    Google Scholar 

  48. McKenzie, D. J., E. W. Taylor, A. Z. Dalla Valle and J. F. Steffensen (2002): Tolerance of acute hypercapnic acidosis by the European eel (Anguilla anguilla). J. Comp. Physiol.B, 172, 339–346.

    Article  Google Scholar 

  49. O'Dor, R. K. and D. M. Webber (1986): The constraints on cephalopods: why squid aren't fish. Can. J. Zool., 64, 1591–1605.

    Article  Google Scholar 

  50. Ohsumi, T. (1995): CO 2 storage options in the deep sea. Mar. Technol. Soc. J., 29, 58–66.

    Google Scholar 

  51. Parmesan, C. and G. Yohe (2003): A globally coherent finger-print of climate change impacts across natural systems. Nature, 421, 37–42.

    Article  Google Scholar 

  52. Pörtner, H. O. (1990): An analysis of the effects of pH on oxygen binding by squid (Illex illecebrosus, Loligo pealei) haemocyanin. J. Exp. Biol., 150, 407–424.

    Google Scholar 

  53. Pörtner, H. O. (1994): Coordination of metabolism, acid-base regulation and haemocyanin function in cephalopods. Mar. Freshw. Behav. Phy., 25, 131–148.

    Article  Google Scholar 

  54. Pörtner, H. O. (2001): Climate change and temperature dependent biogeography: oxygen limitation of thermal tolerance in animals. Naturwissenschaften, 88, 137–146.

    Article  Google Scholar 

  55. Pörtner, H. O. (2002): Climate change and temperature dependent biogeography: systemic to molecular hierarchies of thermal tolerance in animals. Comp. Biochem. Physiol., 132,A739–761.

    Article  Google Scholar 

  56. Pörtner, H. O. (2004): Climate variability and the energetic pathways of evolution: the origin of endothermy in mammals and birds. Physiol. Biochem. Zool. (in press).

  57. Pörtner, H. O. and M. K. Grieshaber (1993): Characteristics of the critical PO 2 (s): gas exchange, metabolic rate and the mode of energy production. p. 330–357. In The VertebrateGas Transport Cascade: Adaptations to Environment andMode of Life, ed. by J. E. P. W. Bicudo, CRC Press Inc., Boca Raton (FL), U.S.A.

  58. Pörtner, H. O. and A. Reipschläger (1996): Ocean disposal of anthropogenic CO 2: physiological effects on tolerant and intolerant animals. p. 57–81. In Ocean Storage of CO 2 Environmental Impact, ed. by B. Ormerod and M. Angel, Massachusetts Institute of Technology and International Energy Agency, Greenhouse Gas R&D Programme, Chel-tenham/Boston.

  59. Pörtner, H. O. and S. Zielinski (1998): Environmental constraints and the physiology of performance in squids. p. 207–221. In Cephalopod Biodiversity, Ecology and Evolution, ed. by A. I. L. Payne, M. R. Lipinski, M. R. Clarke and M. A. C. Roeleveld, South African Journal of Marine Science, 20.

  60. Pörtner, H. O., A. Reipschläger and N. Heisler (1998): Metabolism and acid-base regulation in Sipunculus nudus as a function of ambient carbon dioxide. J. Exp. Biol., 201, 43–55.

    Google Scholar 

  61. Pörtner, H. O., C. Bock and A. Reipschläger (2000): Modulation of the cost of pHi regulation during metabolic depression: a 31P-NMR study in invertebrate (Sipunculus nudus) isolated muscle. J. Exp. Biol. 203, 2417–2428.

    Google Scholar 

  62. Potts, W. T. W. (1994): Kinetics of sodium uptake in freshwater animals--a comparison of ion-exchange and proton pump hypotheses. Am. J. Physiol., 266, R315–R320.

    Google Scholar 

  63. Redfield, A. C. and R. Goodkind (1929): The significance of the Bohr effect on the respiration and asphyxiation of the squid, Loligo pealei. J. Exp. Biol., 6, 340–349.

    Google Scholar 

  64. Reipschläger, A. and H. O. Pörtner (1996): Metabolic depression during environmental stress: the role of extra-versus intracellular pH in Sipunculus nudus. J. Exp. Biol., 199, 1801–1807.

    Google Scholar 

  65. Reipschläger, A., G. E. Nilsson and H. O. Pörtner (1997): Ad-enosine is a mediator of metabolic depression in the marine worm Sipunculus nudus. Am. J. Physiol., 272, R350–R356.

    Google Scholar 

  66. Riebesell, U., D. A. Wolf-Gladrow and V. Smetacek (1993): Carbon dioxide limitation of marine phytoplankton growth rates. Nature, 361, 249–251.

    Article  Google Scholar 

  67. Riebesell, U., I. Zondervan, B. Rost, P. D. Tortell, R. E. Zeebe and F. M. Morel (2000): Reduced calcification of marine Plankton in response to increased atmospheric CO 2. Nature, 407, 364–367.

    Article  Google Scholar 

  68. Sanders, N. K. and J. J. Childress (1990): A comparison of the respiratory function of the hemocyanins of vertically mi-grating and non-migrating oplophorid shrimps. J. Exp. Biol., 152, 167–187.

    Google Scholar 

  69. Scheid, P., H. Shams and J. Piper (1989): Gas exchange in vertebrates. Verh. Dtsch. Zool. Ges., 82, 57–68.

    Google Scholar 

  70. Seibel, B. A. and P. J. Walsh (2001): Potential impacts of CO 2 injections on deep-sea biota. Science, 294, 319–320.

    Article  Google Scholar 

  71. Seibel, B. A., E. V. Thuesen, J. J. Childress and L. A. Gorodezky (1997): Decline in pelagic cephalopod metabolism with habitat depth reflects differences in locomotory efficiency. Biol. Bull., 192, 262–278.

    Article  Google Scholar 

  72. Shirayama, Y. (1995): Current status of deep-sea biology in relation to the CO 2 disposal. p. 253–264. In Direct Ocean Disposal of Carbon Dioxide, ed. by N. Handa and T. Oshumi, TERRAPUB, Tokyo.

  73. Shirayama, Y. (2002): Towards comprehensive understanding of impacts on marine organisms due to raised CO 2 concen-tration. In Proceedings of the 5th International Symposiumon CO 2 Fixation and Efficient Utilization of Energy, Tokyo Institute of Technology, Tokyo.

  74. Tamburri, M. N., E. T. Peltzer, G. E. Friedrich, I. Aya, K. Yamane. and P. G. Brewer (2000): A field study of the effects of CO 2 ocean disposal on mobile deep-sea animals. Mar. Chem., 72, 95–101.

    Article  Google Scholar 

  75. Tamburrini, M., M. Romano, V. Carratore, A. Kunzmann, M. Coletta and G. di Prisco (1998): The hemoglobins of the Antarctic fishes Artedidraco orianae and Pogonophryne scotti. J. Biol. Chem., 273(49), 32452–32459.

    Article  Google Scholar 

  76. Thomas, C. D., A. Cameron, R. E. Green, M. Bakkenes, L. J. Beaumont, Y. C. Collingham, B. F. N. Erasmus, M. Ferreira de Siqueira, A. Grainger, L. Havannah, L. Hughes, B. Huntley, A. S. van Jaarsveld, G. F. Midgley, L. Miles, M. A. Ortega-Huerta, A. Townsend Peterson, O. L. Phillips and S. E. Williams (2004): Extinction risk from climate change. Nature, 427, 145–148.

    Article  Google Scholar 

  77. Torres, J. J. and G. N. Somero (1988): Vertical distribution and metabolism in Antarctic mesopelagic fishes. Comp.Biochem. Physiol., 90B, 521–528.

    Google Scholar 

  78. Truchot, J. P. (1979) Mechanisms of compensation of blood respiratory acid-base disturbances in the shore crab Carcinus maenas (L.). J. Exp. Zool., 210, 407–416.

    Article  Google Scholar 

  79. van Dijk, P. L. M., C. Tesch, I. Hardewig and H. O. Pörtner (1999): Physiological disturbances at critically high temperatures. A comparison between stenothermal Antarctic, and eurythermal temperate eelpouts (Zoarcidae). J. Exp.Biol., 202, 3611–3621.

    Google Scholar 

  80. Vinogradov, G. A. and V. T. Komov (1985): Ion regulation in the perch, Perca fluviatilis, in connection with the problem of acidification of water bodies. J. Ichthyol., 25, 53–61.

    Google Scholar 

  81. Wells, R. M. G., M. D. Ashby, S. J. Duncan and J. A. Macdonald (1980): Comparative study of the erythrocytes and haemoglobins of nototheniid fishes from Antarctica. J. Fish Biol., 17, 517–527.

    Article  Google Scholar 

  82. Wheatly, M. G. (1989): Physiological response of the crayfish Pacifasticus leniusculus (Dana) to environmental hypoxia. I. Extracellular acid-base and electrolyte status and trans-branchial exchange. J. Exp. Biol., 57, 673–680.

    Google Scholar 

  83. Whiteley, N. M., J. L. Scott, S. J. Breeze and L. McCann (2001): Effects of water salinity on acid-base balance in decapod crustaceans. J. Exp. Biol., 204, 1003–1011.

    Google Scholar 

  84. Wickins, J. F. (1984): The effect of hypercapnic sea water on growth and mineralization in penaeid prawns. Aquaculture, 41, 37–48.

    Article  Google Scholar 

  85. Wigley, T. M. L., R. Richels and J. A. Edmonds (1996): Economic and environmental choices in the stabilization of atmospheric CO 2 concentrations. Nature, 379, 240–243.

    Article  Google Scholar 

  86. Wolf-Gladrow, D. A., U. Riebesell, S. Burkhardt and J. Bijma (1999): Direct effects of CO 2 concentration on growth and isotopic composition of marine plankton. Tellus, 51B, 461–476.

    Article  Google Scholar 

  87. Wood, C. M., C. L. Milligan and P. J. Walsh (1999): Renal responses of trout to chronic respiratory and metabolic acidosis and metabolic alkalosis. Am. J. Physiol., 46, R482–R492.

    Google Scholar 

  88. Wood, C. M., B. Wilson, H. L. Bergman, A. N. Berman, P. Laurent, G. Otiang'a-Owite and P. J. Walsh (2002): Obligatory urea production and the cost of living in the Magadi tilapia revealed by acclimation to reduced salinity and al-kalinity. Physiol. Biochem. Zool., 75(2), 111–122.

    Article  Google Scholar 

  89. Zielinski, S., F. J. Sartoris and H. O. Pörtner (2001): Temperature effects on hemocyanin oxygen binding in an Antarctic cephalopod. Biol. Bull., 200, 67–76.

    Article  Google Scholar 

Download references

Author information

Affiliations

Authors

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Pörtner, H.O., Langenbuch, M. & Reipschläger, A. Biological Impact of Elevated Ocean CO2 Concentrations: Lessons from Animal Physiology and Earth History. Journal of Oceanography 60, 705–718 (2004). https://doi.org/10.1007/s10872-004-5763-0

Download citation

  • Rising tropospheric CO2 concentrations
  • ocean disposal of CO2
  • critical CO2 thresholds in marine animals
  • physiological effects of hypercapnia
  • acid-base disturbances
  • CO2 in marine ecosystems
  • mass extinction events