Skip to main content
Log in

Copper(II) Tetrafluoroborate Hexahydrate: Preparation, Structure and Raman Spectrum

  • Original Paper
  • Published:
Journal of Chemical Crystallography Aims and scope Submit manuscript

Abstract

Previously unknown crystal structure of a copper(II) tetrafluoroborate hexahydrate salt was determined using single crystal X-ray diffraction. The unit cell parameters were determined at different temperatures (90, 150 and 270 K). The structure is isotypical with copper(II) perchlorate hexahydrate. The Raman spectrum was also recorded and discussed.

Graphical Abstract

The K.P.I. coefficient (78.0) and the FUV index (256.21 Å3) indicating very effective packing of the ions in the discussed structure, whereas the β angle is very close to the 90° and, in this way, the crystal could undergo a monoclinic \(\to \) orthorhombic phase transition at some lower temperatures.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

Data Availability

Crystallographic data of the compound copper(II) tetrafluoroborate hexahydrate Cu(BF4)2·6H2O or [CuII(H2O)6](BF4)2 (CSD 2310386) was deposited at the Cambridge Crystallographic Data Centre and could be obtained free of charge upon application to CCDC, 12 Union Road, Cambridge CB21EZ, UK [fax: (+ 44) 1223-336-033; email: deposit@ccdc.cam.ac.uk].

References

  1. Pinaevskaya EN, Morgunova EM, Antoshkina NL, Sushkova SG (1964) J Appl Chem USSR 37(6):1176–1182

    CAS  Google Scholar 

  2. Kirgincev AN, Trushnikova LN, Lavrenteva VG (1972) Solubility of inorganic compounds in water. Chemistry 1972:216–217

    Google Scholar 

  3. Dewan JC, Thompson LK (1982) Can J Chem 60:121–132

    Article  CAS  Google Scholar 

  4. Degtyarik MM, Lyakhov AS, Ivashkevich LS, Matulis VE, Matulis VE, Gruschinski S, Voitekhovich SV, Kersting B, Ivashkevich OA (2015) Dalton Trans 44(42):18518–18526

    Article  CAS  PubMed  Google Scholar 

  5. Gaughan AP, Dori Z, Ibers JA (1974) Inorg Chem 13(7):1657–1667

    Article  CAS  Google Scholar 

  6. Brunton G (1968) Acta Crystallogr B Struct Crystallogr Cryst Chem 24(12):1703–1704

    Article  CAS  Google Scholar 

  7. Brunton G (1969) Acta Crystallogr B Struct Crystallogr Cryst Chem 25(10):2161–2162

    Article  Google Scholar 

  8. Jordan TH, Dickens B, Schroeder LW, Brown WE (1975) Acta Crystallogr B Struct Crystallogr Cryst Chem 31(3):669–672

    Article  Google Scholar 

  9. Goreshnik E, Vakulka A, Žemva B (2010) Acta Crystallogr C 66:e9

    Article  CAS  PubMed Central  Google Scholar 

  10. Brunot B (1974) Chem Phys Lett 29(3):371–375

    Article  CAS  Google Scholar 

  11. Asch L, Dézsi I, Lohner T, Molnár B (1976) Chem Phys Lett 39(1):177–179

    Article  CAS  Google Scholar 

  12. Moss KC, Russell DR, Sharp DWA (1961) Acta Crystallogr 14(3):330–330

    Article  CAS  Google Scholar 

  13. Tutton AE (1896) J Chem Soc Trans 69:344–495

    Article  CAS  Google Scholar 

  14. Jahn HA, Teller E (1937) Proc R Soc A 161:220–235

    CAS  Google Scholar 

  15. Aramburu JA, Bhowmik A, García-Lastra JM, García-Fernández P, Moreno M (2019) J Phys Chem C 123(5):3088–3101

    Article  CAS  Google Scholar 

  16. Robinson MWC, Pillinger KS, Graham AE (2006) Tetrahedron Lett 47(33):5919–5921

    Article  CAS  Google Scholar 

  17. Garg SK, Kumar R, Chakraborti AK (2005) Tetrahedron Lett 46(10):1721–1724

    Article  CAS  Google Scholar 

  18. Zagorac D, Müller H, Ruehl S, Zagorac J, Rehme S (2019) J Appl Crystallogr 52:918–925

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. CrysAlisPro, Agilent Technologies, Version 1.171.37.31 (release 14-01-2014 CrysAlis171 .NET).

  20. Sheldrick GM (2015) Acta Crystallogr A 71:3–8

    Article  Google Scholar 

  21. Sheldrick GM (2015) Acta Crystallogr C 71:3–8

    Article  Google Scholar 

  22. Dolomanov OV, Bourhis LJ, Gildea RJ, Howard JAK, Puschmann H (2009) OLEX2: a complete structure solution, refinement and analysis program. J Appl Crystallogr 42:339–341

    Article  CAS  Google Scholar 

  23. Crystal Impact GbR, Bonn, Germany (2004–2005) DIAMOND v3.1.

  24. Fortes AD, Suard E, Lemée-Cailleau MH, Pickard CJ, Needs RJ (2009) J Am Chem Soc 131:13508–13515

    Article  CAS  PubMed  Google Scholar 

  25. Boeré RT (2023) Crystals 13(2):293

    Article  Google Scholar 

  26. Ballirano P, Belardi G, Bosi F (2007) Acta Crystallogr E 63(7):i164–i165

    Article  CAS  Google Scholar 

  27. Bosi F, Belardi G, Ballirano P (2009) Am Mineral 94(1):74–82

    Article  CAS  Google Scholar 

  28. Janes R, Moore EA (2004) Metal-ligand bonding. The Royal Society of Chemistry, London, p 130

    Google Scholar 

  29. Figgis BN, Sobolev AN, Simmons CJ, Hitchman MA, Stratemeier H, Riley MJ (2000) Acta Crystallogr B 56(3):438–443

    Article  PubMed  Google Scholar 

  30. Zibaseresht R, Hartshorn RM (2006) Acta Crystallogr E 62:i19–i22

    Article  CAS  Google Scholar 

  31. Zibaseresht R, Hartshorn RM (2012) Acta Crystallogr E 69(1):e1–e1

    Article  Google Scholar 

  32. Spek AL (2003) J Appl Crystallogr 36:7–11

    Article  CAS  Google Scholar 

  33. West CD (1935) Z Kristallogr 91:480–493

    Article  CAS  Google Scholar 

  34. Rajakumar V, Krishnamurthy N, Ramakrishnant V, Kumar J (1992) J Raman Spectrosc 23:75–79

    Article  CAS  Google Scholar 

  35. Bates JB, Quist AS, Boyd GE (1971) J Chem Phys 54(1):124–126

    Article  CAS  Google Scholar 

  36. Barashkov MV, Zazhogin AA, Komyak AI, Shashkov SN (2000) J Appl Spectrosc 67(4):605–611

    Article  CAS  Google Scholar 

  37. Gallucci JC, Gerkin RE (1989) Acta Cryst C45:1279–1284

    CAS  Google Scholar 

Download references

Acknowledgements

The authors gratefully acknowledge the Slovenian Research Agency (ARRS) for financial support of the present study within the research program P1-0045 (Inorganic Chemistry and Technology).

Funding

Funding was provided by Slovenian Research Agency (ARRS) (Grant No. P1-0045).

Author information

Authors and Affiliations

Authors

Contributions

AV wrote the main manuscript, prepared figures, graph. abstract etc. AV prepared the crystalline specimen. EG refined cryst. structure and recorded the Raman spectrum. All authors reviewed the manuscript.

Corresponding author

Correspondence to Andrii Vakulka.

Ethics declarations

Conflict of interest

No potential conflict of interest was reported by the authors.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Vakulka, A., Goreshnik, E. Copper(II) Tetrafluoroborate Hexahydrate: Preparation, Structure and Raman Spectrum. J Chem Crystallogr 54, 157–162 (2024). https://doi.org/10.1007/s10870-024-01008-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10870-024-01008-3

Keywords

Navigation