Skip to main content
Log in

Synthesis, Crystal Structure and Spectral Characterization of a New Caesium–Sodium-Isopolyvanadate: Photodegradation of Methylene Blue Dye

  • Original Paper
  • Published:
Journal of Chemical Crystallography Aims and scope Submit manuscript

Abstract

A new aqua-tricaesium-sodium polymetavanadate compound, [Cs3Na(VO3)4(H2O)] (1), was synthesized by reacting caesium chloride and sodium metavanadate at ambient pH. The structure was characterized and identified using single-crystal X-ray diffraction, Fourier-transform infrared spectroscopy, Raman spectroscopy, and energy dispersive X-ray analysis (EDS). Compound (1) crystallizes in an orthorhombic system with a Pnma space group, and cell parameters a = 11.6554(4), b = 8.3408(2), c = 16.1121(5). Vanadium has tetrahedral coordination connected to the next vanadium atom through an oxygen bridge. The infinite zigzag metavanadate chains formed by corner-sharing VO4 tetrahedral constitute a1D building block. The chains were laterally connected through Cs, Na, and H2O. This connectivity generates continuous 2D layers within the ab plane. The photocatalytic performance of (1) was evaluated by measuring the degradation of methylene blue under visible light. The results confirmed the efficiency of the photocatalytic activity because of the narrowed bandgap energy of 2.18 eV, and 85% degradation rate, making it suitable for absorbing visible light.

Graphical Abstract

The paper reports the synthesise and characterization of a new isopolyvanadate compound, [Cs3Na(VO3)4H2O], which contains vanadim in the five oxidation state with tetrahedral coordination.  It forms metavanadate chains interconnected by caesium and sodium cations. The photocatalytic activity was tested by degrading methylen blue under visible light irradiation. The results showed decent activity attributed to the narrowed bandgap energy of 2.18 eV.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

Data Availability

The authors confirm that the data supporting the findings of this study are available within the article and its supplementary materials.

References

  1. Pope MT, Müller A (1991) Polyoxometalate chemistry: an old field with new dimensions in several disciplines. Angewandte Chemie Int Edn Eng 30:34–48. https://doi.org/10.1002/anie.199100341

    Article  Google Scholar 

  2. Pierre Gouzerh M (2006) From Scheele and Berzelius to Müller: polyoxometalates (POMs) revisited and the missing link between the bottom up and top down approaches. Actual Chim 298:9–22

    Google Scholar 

  3. Kortz U, Müller A, Müller J, van Slageren Jürgen, Schnack NS, Dalal M Dressel (2009) Polyoxometalates: fascinating structures, unique magnetic properties. Coord Chem Rev 253:2315–2327. https://doi.org/10.1016/j.ccr.2009.01.014

    Article  CAS  Google Scholar 

  4. Hasenknopf B (2005) Polyoxometalates: introduction to a class of inorganic compounds and their biomedical applications. Front Biosci 10:275–287. https://doi.org/10.2741/1527

    Article  CAS  PubMed  Google Scholar 

  5. Rezaeifard A, Jafarpour M, Haddad R, Tavallaei H, Mohammad Hakimi (2014) {Mo 132 } Nanoball as an E ffi cient and Cost-E ff ective Catalyst for sustainable oxidation of sul fi des and ole fi ns with hydrogen peroxide. Sustainable Chem Eng 2:942–950. https://doi.org/10.1021/sc4005263

    Article  CAS  Google Scholar 

  6. Feizi N, Hassani H, Hakimi M (2005) Preyssler acid: a mild and efficient catalyst for the protection alcohols with dihydropyran. Bull Korean Chem Soc 26:2087–2088. https://doi.org/10.5012/bkcs.2005.26.12.2087

    Article  CAS  Google Scholar 

  7. VanGelder LE, Kosswattaarachchi AM, Forrestel PL, Cook TR, Matson EM (2018) Polyoxovanadate-alkoxide clusters as multi-electron charge carriers for symmetric non-aqueous redox flow batteries. Chem Sci 9:1692–1699. https://doi.org/10.1039/c7sc05295b

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. An H, Zhang J, Chang S, Hou Y, Zhu Q (2020) 2D hybrid architectures constructed from two kinds of polyoxovanadates as efficient heterogeneous catalysts for cyanosilylation and Knoevenagel condensation. Inorg Chem 59:10578–10590. https://doi.org/10.1021/acs.inorgchem.0c00999

    Article  CAS  PubMed  Google Scholar 

  9. Roubatis L, Anastasiadis NC, Paratriantafyl- lopoulou C, Moushi E, Tasiopoulos AJ, Kark-abounas SC, Veltsistas PG, Perlepes SP, Evangelou AE (2016) A missing oxidation-state level in the family of polyoxo(azide)octadecavanadate(IV/V) clusters: synthesis, structure and antitumoural properties of [VIV11VV7O44(N3)]10-in a sodium containing-3D architecture. Inorg Chem Commun 69:85–88. https://doi.org/10.1016/j.inoche.2016.04.019

    Article  CAS  Google Scholar 

  10. Mina Alikhani M, Hakimi KM, Mashreghi M, Eigner V (2020) Spectral, structural, biological and molecular docking studies of a new mixed-valence V(IV)/V(V) ofloxacin complex. J Mol Struct 1216:128300. https://doi.org/10.1016/j.molstruc.2020.128300

    Article  CAS  Google Scholar 

  11. Peter Y, Zavalij M, Stanley Whittingham (1999) Structural chemistry of vanadium oxides with open frameworks. Acta Crystallogr Sect B: Struct Sci 55:627–663. https://doi.org/10.1107/S0108768199004000

    Article  ADS  Google Scholar 

  12. Gotic´ M, Popovic´ S, Ivanda M, Music S (2003) Sol–gel synthesis and characterization of V 2 O 5 powders. Mater Lett 57:3186–3192. https://doi.org/10.1016/S0167-577X(03)00022-3

    Article  CAS  Google Scholar 

  13. Chen H-Y, Wee G, Al-Oweini R, Friedl J, Tan KS, Wang Y, Wong CL, Kortz U, Stimming U (2014) A polyoxovanadate as an advanced electrode material for supercapacitors. ChemPhysChem 15:2162–2169. https://doi.org/10.1002/cphc.201400091

    Article  CAS  PubMed  Google Scholar 

  14. Pamela J, Hagrman RC, Finn J Zubieta (2001) Molecular manipulation of solid state structure: influences of organic components on vanadium oxide architectures. Solid State Sci 3:745–774. https://doi.org/10.1016/S1293-2558(01)01186-4

    Article  ADS  Google Scholar 

  15. de Luis RF, Orive J, Larrea ES, Karmele Urtiaga M, Arriortua MaríaI (2014) Hybrid vanadates constructed from extended metal–organic arrays: crystal architectures and properties. CrystEngComm 16:10332–10366. https://doi.org/10.1039/C4CE00532E

    Article  CAS  Google Scholar 

  16. Smith Pellizzeri TM, McGuire MA, McMillen CD, Wen Y, Chumanov G, Kolis JW (2018) Two halide-containing cesium manganese vanadates: synthesis, characterization, and magnetic properties. Dalton Trans. https://doi.org/10.1039/C7DT04642A

    Article  PubMed  Google Scholar 

  17. Lu Y, Pu Y, Huang Y, Wang J, Lu J (2015) Synthesis, optical properties and photodegradation for methylene blue of Ni-vanadate K 2Ni(VO 3)4 nanoparticles. J Nanoparticles Res 17:451. https://doi.org/10.1007/s11051-015-3251-7

    Article  CAS  ADS  Google Scholar 

  18. Joseph WK, Tiffany M, Smith Pellizzeri CD, McMillen K Ivey (2019) Crystal structure and preferential site occupancy in Cs6Mn(H2O)2(VO3)8 and Cs5KMn(H2O)2(VO3)8. J Chem Crystallogr 49:186–192. https://doi.org/10.1007/s10870-019-00787-4

    Article  CAS  Google Scholar 

  19. Wendy L, Queen J, Palmer West S-J, Hwu, Donald GVD, Zarzyczny MC, Ryan A, Pavlick (2008) The versatile chemistry and noncentrosymmetric crystal structures of salt-inclusion vanadate hybrids. Angew Chem Int Ed 40:3791–3794. https://doi.org/10.1002/anie.200705113

    Article  CAS  Google Scholar 

  20. Petrícek V, Dušek M, Palatinus L (2014) Crystallographic computing system JANA2006: general features. Zeitschrift fur Kristallographie 229:345–352. https://doi.org/10.1515/zkri-2014-1737

    Article  CAS  Google Scholar 

  21. Clare F, Macrae I, Sovago SJ, Cottrell, Peter TAG, McCabe P, Pidcock E, Platings M, Shields GP, Stevens JS, Towler M, Peter AW (2020) Mercury 4.0: from visualization to analysis, design and prediction. J Appl Crystallogr 53:226–235. https://doi.org/10.1107/S1600576719014092

    Article  ADS  Google Scholar 

  22. Knut R, Asmis G, Santambrogio M, Brummer J, Sauer (2005) Polyhedral vanadium oxide cages: infrared spectra of cluster anions and size-induced d electron localization. Angewandte Chemie 44:3122–3125. https://doi.org/10.1002/anie.200462894

    Article  CAS  Google Scholar 

  23. Mannar R, Maurya N, Chaudhary F Avecilla (2014) Polymer-grafted and neat vanadium (V) complexes as functional mimics of haloperoxidases. Polyhedron 67:436–448. https://doi.org/10.1016/j.poly.2013.09.021

    Article  CAS  Google Scholar 

  24. de Waal D (1991) Vibrational spectra of the two phases of NaVO3 and the solid solution na (V0.66P0.34) O3. Mater Res Bull 26:893–900. https://doi.org/10.1016/0025-5408(91)90169-M

    Article  Google Scholar 

  25. Petr Shvets O, Dikaya K, Maksimova A Goikhman (2019) A review of Raman spectroscopy of vanadium oxides. J Raman Spectrosc 50:1226–1244. https://doi.org/10.1002/jrs.5616

    Article  CAS  ADS  Google Scholar 

  26. Mi L, Huang Y, Qin C, Qin L, Seo HJ (2018) Hydrothermal synthesis and optical properties of CsV3O8 microplates. J Lumin 194:414–419. https://doi.org/10.1016/j.jlumin.2017.10.044

    Article  CAS  Google Scholar 

  27. Le TK, Kang M, Kim SW (2019) A review on the optical characterization of V2O5 micro-nanostructures. Ceram Int 45:15781–15798. https://doi.org/10.1016/j.ceramint.2019.05.339

    Article  CAS  Google Scholar 

  28. Defa Wang J, Tang Z, Zou J (2005) Photophysical and photocatalytic properties of a new series of visible-light-driven photocatalysts M3V2O8 (M) mg, Ni, Zn). Chem Mater 8:5177–5182. https://doi.org/10.1021/cm051016x

    Article  CAS  Google Scholar 

  29. Akbari A, Sabouri Z, Hosseini HA, Hashemzadeh A, Khatami M, Majid Darroudi (2020) Effect of nickel oxide nanoparticles as a photocatalyst in dyes degradation and evaluation of effective parameters in their removal from aqueous environments. Inorg Chem Commun 115:107867. https://doi.org/10.1016/j.inoche.2020.107867

    Article  CAS  Google Scholar 

  30. Mohammad Hakimi M, Morvaridi HA, Hosseini P Alimard (2019) Preparation, characterization, and photocatalytic activity of Bi2O3–Al2O3 nanocomposite. Polyhedron 170:523–529. https://doi.org/10.1016/j.poly.2019.06.029

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This research is supported by Payame Noor University of Tehran, Iran based on the Ph.D. thesis of Ms.Tahmineh Kohanfekr. The crystallographic part used the research infrastructure supported within the project CzechNanoLab of MEYS CR (LM2023051).

Funding

No funding was received for conducting this study.

Author information

Authors and Affiliations

Authors

Contributions

Tahmineh Kohanfekr: Methodology, software, validation, investigation, resources, data curation, writing original draft. Mohammad Hakimi: project administration. Hasan Ali Hosseini: review & editing. Michal Dusek: review & editing. Monika Kucerakova: crystallography.

Corresponding author

Correspondence to Tahmineh Kohanfekr.

Ethics declarations

Conflict of interest

The authors declare no competing interests.

Ethical Approval

Not applicable.

Additional information

Publisher’s Note

Springer nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kohanfekr, T., Hakimi, M., Hosseini, H.A. et al. Synthesis, Crystal Structure and Spectral Characterization of a New Caesium–Sodium-Isopolyvanadate: Photodegradation of Methylene Blue Dye. J Chem Crystallogr (2024). https://doi.org/10.1007/s10870-024-01005-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10870-024-01005-6

Keywords

Navigation