Skip to main content
Log in

2,4,8,10-Tetra-tert-butyl-6-phenyldibenzo[d,g]-[1,3,6,2]dioxaselena-phosphocine Complexes: C–Se Bond Cleavage and Its Oxidative Addition to Form a Novel Octahedral Rhodium(III) Complex and Hirshfeld Analysis

  • Original Paper
  • Published:
Journal of Chemical Crystallography Aims and scope Submit manuscript

Abstract

Selenaphosphocine [(–OC6H2(tBu)2(µ-Se)(tBu)2C6H2O–)PhP] (1) on treatment with [Pd(COD)Cl2] yielded P,Se-coordinated complex [{(–OC6H2(tBu)2(µ-Se)(tBu)2C6H2O–)PhP}(PdCl2)] (2), whereas the reaction of 1 with [AuCl⋅SMe2] resulted in only P-coordinated complex [{(–OC6H2(tBu)2(µ-Se)(tBu)2C6H2O–)PhP}(AuCl)] (4). The reaction of 1 with [Rh(CO)2Cl]2 in 4:1 molar ratio yielded a rare RhIII octahedral complex [{PhP(–OC6H2(tBu)2(µ-Se)(tBu)2C6H2O–)}{PPh(–OC6H2(tBu)2)(Se(tBu)2C6H2O–)}(RhCl)] (3) in good yield, in which one of the C–Se bonds of selenophosphocine is added oxidatively to RhI. All of the complexes have been structurally characterized and are crystallized in the triclinic crystal system with P¯1 space group. All complexes showed intermolecular C–H⋯O and C–H ⋯Se hydrogen bonding interactions, that play major role in the crystal packing to form a three-dimensional array. In complex 2, the crystal packing reveals the presence of rare intermolecular Pd⋯Cl interactions. Hirshfeld surface analysis, dnorm and two-dimensional fingerprint plots were investigated to validate the contributions of the different intermolecular contacts within the supramolecular structure. A Hirshfeld surface analysis indicated that the most significant contributions to the crystal packing of 2 are from H⋯H (66.3%), C⋯H/H⋯C (13.5%), Cl⋯H/H⋯Cl (13.7%), Cl⋯C/C⋯Cl (1.8%) and Cl⋯C/C⋯Cl (1.0%) contacts, and those for 3 are from H⋯H (88.3%), C⋯H/H⋯C (8.3%) and Se⋯H/H⋯Se (3.6%) contacts, while those for 4 are from H⋯H (71.5%), C⋯H/H⋯C (9.9%), Cl⋯H/H⋯Cl (10.2%), Se⋯H/H⋯Se (2.7%) and Au⋯H/H⋯Au (1.7%) contacts.

Graphical Abstract

This paper describes the cleavage of a C–Se from dioxaselenaphosphocine and its oxidative addition to rhodium(I) complex and Hirshfeld analysis.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1
Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16

Similar content being viewed by others

Data Availability

Data set generated during and/or analysed during the current study are available from the corresponding author on reasonable request.

References

  1. Grushin VV (2004) Mixed phosphine−phosphine oxide ligands. Chem Rev 104(3):1629–1662

    Article  CAS  PubMed  Google Scholar 

  2. Munzeiwa WA, Omondi B, Nyamori VO (2020) Architecture and synthesis of P, N-heterocyclic phosphine ligands. Beilstein J Org Chem 16:362–383

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Dilworth JR, Wheatley N (2000) The preparation and coordination chemistry of phosphorus sulfur donor ligands. Coord Chem Rev 199(1):89–158

    Article  CAS  Google Scholar 

  4. Mondal D, Balakrishna MS (2021) Recent advances in organophosphorus–chalcogen and organophosphorus–pincer based macrocyclic compounds and their metal complexes. Dalton Trans 50(19):6382–6409

    Article  CAS  PubMed  Google Scholar 

  5. Kumar S, Mondal D, Balakrishna MS (2018) Diverse architectures and luminescence properties of Group 11 complexes containing pyrimidine-based phosphine, N-((Diphenylphosphine)methyl)pyrimidin-2-amine. ACS Omega 3(12):16601–16614

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Choubey B, Radhakrishna L, Mague JT, Balakrishna MS (2016) Two triazole-based phosphine ligands prepared via temperature-mediated Li/H exchange: CuI and AuI complexes and structural studies. Inorg Chem 55(17):8514–8526

    Article  CAS  PubMed  Google Scholar 

  7. Kumar P, Kashid VS, Reddi Y, Mague JT, Sunoj RB, Balakrishna MS (2015) A phosphomide based PNP ligand, 2,6-{Ph2PC(O)}2(C5H3N), showing PP, PNP and PNO coordination modes. Dalton Trans 44(9):4167–4179

    Article  CAS  PubMed  Google Scholar 

  8. Dyer G, Meek DW (1967) Five-coordination. VI. Low-spin cobalt(II) complexes with with bidentate ligands. J Am Chem Soc 89(16):3983–3987

  9. Cunningham TJ, Elsegood MRJ, Kelly PF, Smith MB, Staniland PM (2010) Versatile routes to selenoether functionalised tertiary phosphines. Dalton Trans 39(22):5216–5218

    Article  CAS  PubMed  Google Scholar 

  10. Balakrishna MS, Klein R, Uhlenbrock S, Pinkerton AA, Cavell RG (1993) Heterodifunctional ligands derived from monooxidized bis(phosphino)amines. Synthesis and transition metal (molybdenum(O), tungsten(O), rhodium(I), palladium(II), and platinum(II)) complexes of (diphenylphosphino)(diphenylphosphinothiolyl)- and (diphenylphosphino)(diphenyl-phosphinoselenoyl)phenylamine, Ph2PN(Ph)P(E)Ph2 (E = S, Se). Crystal and molecular structure of the Pt(II) complex [Cl2Pt(PPh2N(Ph)P(S)Ph2].H2O. Inorg Chem 32(25):5676–5681

  11. Spokoyny AM, Rosen MS, Ulmann PA, Stern C, Mirkin CA (2010) Selective formation of Heteroligated Pt(II) complexes with bidentate phosphine-thioether (P, S) and phosphine-selenoether (P, Se) ligands via the halide-induced ligand rearrangement reaction. Inorg Chem 49(4):1577–1586

    Article  CAS  PubMed  Google Scholar 

  12. Punji B, Mague JT, Balakrishna MS (2006) Bis(2-diphenylphosphinoxynaphthalen-1-yl)methane: transition metal chemistry, Suzuki cross-coupling reactions and homogeneous hydrogenation of olefins. Dalton Trans 10:1322–1330

    Article  Google Scholar 

  13. Punji B, Mague JT, Balakrishna MS (2007) Highly air-stable anionic mononuclear and neutral binuclear Palladium(II) complexes for C−C and C−N bond-forming reactions. Inorg Chem 46(26):11316–11327

    Article  CAS  PubMed  Google Scholar 

  14. Punji B, Mague JT, Balakrishna MS (2006) Synthesis of neutral (PdII, PtII), cationic (PdII), and water-induced anionic (PdII) complexes containing new mesocyclic thioether−aminophosphonite ligands and their application in the Suzuki cross-coupling reaction. Inorg Chem 45(23):9454–9464

    Article  CAS  PubMed  Google Scholar 

  15. Radhakrishna L, Kunchur HS, Namdeo PK, Butcher RJ, Balakrishna MS (2020) New 1,2,3-triazole based bis- and trisphosphine ligands: synthesis, transition metal chemistry and catalytic studies. Dalton Trans 49(11):3434–3449

    Article  CAS  PubMed  Google Scholar 

  16. Radhakrishna L, Pandey MK, Balakrishna MS (2018) 1,2,3-Triazole based bisphosphine, 5-(diphenylphosphanyl)-1-(2-(diphenylphosphanyl)-phenyl)-4-phenyl-1H-1,2,3-triazole: an ambidentate ligand with switchable coordination modes. RSC Adv 8(45):25704–25718

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Kumaravel M, Kumar P, Balakrishna MS (2014) Application of bisphosphomide-palladium(II) pincer complex in Suzuki-Miyaura cross-coupling reaction under microwave irradiation. J Chem Sci 126(3):711–716

    Article  CAS  Google Scholar 

  18. Kunchur HS, Radhakrishna L, Pandey MK, Balakrishna MS (2021) Novel approach to benzo-fused 1,2-azaphospholene involving a Pd(ii)-assisted tandem P-C bond cleavage and P–N bond formation reaction. Chem Commun 57(39):4835–4838

    Article  CAS  Google Scholar 

  19. Namdeo PK, Sheokand S, Kote BS, Radhakrishna L, Kunchur HS, Saini P, Ramakrishnan S, Balakrishna MS (2022) RuII complexes of 1,2,3-triazole appended tertiary phosphines, [P(Ph){(o-C6H4)(1,2,3–N3C(Ph)CH}2] and [P(Ph){o-C6H4(CCH)-(1,2,3-N3-Ph)}2]: highly active catalysts for transfer hydrogenation of carbonyl/nitro compounds and for α-alkylation of ketones. Dalton Trans 51(17):6795–6808

    Article  CAS  PubMed  Google Scholar 

  20. Rao S, Mague JT, Balakrishna MS (2013) Synthesis, transition metal chemistry and catalytic reactions of ferrocenylbis(phosphonite), [Fe{C5H4P(OC6H3(OMe-o)(C3H5-p))2}2]. Dalton Trans 42(32):11695–11708

    Article  CAS  PubMed  Google Scholar 

  21. Prasad PS, Balakrishna MS (2018) Synthesis and transition metal chemistry of ferrocenylbis(benzo-oxazaphosphininone). J Organomet Chem 862:31–39

    Article  CAS  Google Scholar 

  22. Sameer Prasad P, Pandey MK, Balakrishna MS (2019) Synthesis and transition metal complexes of 1,1′-bis(diphenylethynylphosphino)ferrocene. Polyhedron 158:173–182

    Article  CAS  Google Scholar 

  23. Siddiqui MM, Radhakrishna L, Mague JT, Balakrishna MS (2016) 1,1′-Bis(dipyrrolylphosphino)ferrocene: synthesis, coordination chemistry and structural studies. J Organomet Chem 824:15–24

    Article  CAS  Google Scholar 

  24. Punji B, Mague JT, Balakrishna MS (2007) Thioether-functionalized Ferrocenyl-bis(phosphonite), Fe{(C5H4)P(−OC10H6(μ-S)C10H6O−)}2: synthesis, coordination behavior, and application in Suzuki-Miyaura cross-coupling reactions. Inorg Chem 46(24):10268–10275

    Article  CAS  PubMed  Google Scholar 

  25. Siddiqui MM, Mobin SM, Senkovska I, Kaskel S, Balakrishna MS (2014) Novel zeotype frameworks with soft cyclodiphosphazane linkers and soft Cu4X4 clusters as nodes. Chem Commun 50(82):12273–12276

    Article  CAS  Google Scholar 

  26. Kumar P, Mondal D, Kunchur HS, Mague JT, Balakrishna MS (2022) Synthesis, structural characterization, Hirshfeld analysis and AIM analysis of 2,4,8,10-tetra-tert-butyl-6-phenyldibenzo[d, g][1,3,6,2]- dioxaselenaphosphocine and its oxide and selenide derivatives. J Chem Crystallogr. https://doi.org/10.1007/s10870-022-00972-y

    Article  Google Scholar 

  27. Drew D, Doyle JR (1972) Cyclic Diolefin complexes of platinum and palladium. Inorg Synth 13: 52–53

  28. Mccleverty JA, Wilkinson G (1990) Tetracarbonyldichlorodirhodium. Inorg Synth 28: 84–86

  29. Brandys M-C, Jennings MC, Puddephatt RJ (2000) Luminescent gold(I) macrocycles with diphosphine and 4,4′-bipyridyl ligands. J Chem Soc Dalton Trans 24:4601–4606

    Article  Google Scholar 

  30. Sheldrick GM (2008) CELL_NOW. University of Göttingen, Göttingen

    Google Scholar 

  31. Sheldrick GM (2009) TWINABS. University of Göttingen, Göttingen

    Google Scholar 

  32. Bruker (2008, 2009a) APEX2, version 2008.6-1, 2009.5-1, 2009.9-0, 2009.11-0, 2010.11-3. Bruker-AXS, Madison

  33. Sheldrick GM (2008a, 2009) SADABS, version 2008/2 and version 2009/2. University of Göttingen, Germany

  34. Sheldrick GM (2008) SHELXS and SHELXL. Acta Cryst A64:112–122

    Article  Google Scholar 

  35. Spek A (2015) PLATON SQUEEZE: a tool for the calculation of the disordered solvent contribution to the calculated structure factors. Acta Cryst C71(1):9–18

    Google Scholar 

  36. Sherlock DJ, Chandrasekaran A, Day RO, Holmes RR (1997) Hexacoordination via sulfur donor action in nitrogen and chlorine bonded bicyclic tetraoxyphosphoranes1. J Am Chem Soc 119(6):1317–1322

    Article  CAS  Google Scholar 

  37. Sherlock DJ, Chandrasekaran A, Day RO, Holmes RR (1997) Pentacoordination and pseudopentacoordination via sulfur donor action in cyclic phosphates and phosphites1. Inorg Chem 36(22):5082–5089

    Article  CAS  Google Scholar 

  38. Balakrishna MS, Panda R, Mague JT (2001) New 10-membered inorganic heterocyclic diphosphanes, PhN(PX)2{(−OC6H2(tBu)2)(μ-S)((tBu)2C6H2O−)} (X = Cl, F). synthesis and transition metal complexes (Molybdenum(0), Ruthenium(II), Palladium(II), and Platinum(II)) of heterocyclic diphosphanes. Crystal and molecular structures of the chloro derivative, PhN(PCl)2{(−OC6H2(tBu)2)(μ-S)((tBu)2C6H2O−)}, and of a Molybdenum(0) complex of the fluoro derivative, [Mo(CO)3{η3-PhN(PF)2{(−OC6H2(tBu)2)(μ-S)((tBu)2C6H2O−)}-κP,κP,κS}]. Inorg Chem 40 (22):5620–5625

  39. Prakasha TK, Day RO, Holmes RR (1992) Pentacoordinated molecules. 92. Diequatorial and axial-equatorial orientations of eight-membered rings in monocyclic pentaoxyphosphoranes containing trifluoroethoxy groups. Inorg Chem 31 (10):1913–1920

  40. Day RO, Prakasha TK, Holmes RR, Eckert H (1994) Cyclic silanes. Sulfur Induc Pentacoordination Disiloxane Organomet 13(4):1285–1293

    CAS  Google Scholar 

  41. Hayashi T (2000) Chiral monodentate phosphine ligand MOP for transition-metal-catalyzed asymmetric reactions. Acc Chem Res 33(6):354–362

    Article  CAS  PubMed  Google Scholar 

  42. Punji B, Mague JT (2007) Balakrishna MS (2007) Group 11 metal complexes of the mesocyclic thioether aminophosphonites [-OC10H6(μ-S)C10H6O-]PNC4H8E (E = O, NMe). Eur J Inorg Chem 5:720–731

    Article  Google Scholar 

  43. Spackman MA, Jayatilaka D (2009) Hirshfeld surface analysis. CrystEngComm 11(1):19–32

    Article  CAS  Google Scholar 

  44. McKinnon JJ, Jayatilaka D, Spackman MA (2007) Towards quantitative analysis of intermolecular interactions with Hirshfeld surfaces. Chem Commun 37:3814–3816

    Article  Google Scholar 

  45. Turner MJ, McKinnon JJ, Wolff SK, Grimwood DJ, Spackman PR, Jayatilaka D, Spackman MA (2017) CrystalExplorer21.5. The University of Western Australia, Crawley

Download references

Acknowledgements

MSB thanks the Science and Engineering Research Board, New Delhi, for financial support of this work through grant CRG/2019/000040. We also thank the Department of Chemistry Instrumentation Facilities, IIT Bombay, for spectral and analytical data. PK thanks CSIR, New Delhi for research fellowships (JRF and SRF), DM thanks the Department of Science and Technology, New Delhi, for the Inspire fellowship. J.T.M. thanks the Louisiana Board of Regents for the purchase of the CCD diffractometer and the Chemistry Department of Tulane University for support of the X-ray laboratory.

Author information

Authors and Affiliations

Authors

Contributions

PK, DM: Equal contributions, conceptualization, interpretation of the data, visualization, methodology and writing-original draft of the manuscript. JTM: Mounting the crystals, collecting data and solving the structures. MSB: Investigation, supervision, revision of the manuscript and approval of the final version of the manuscript.

Corresponding authors

Correspondence to Joel T. Mague or Maravanji S. Balakrishna.

Ethics declarations

Conflict of interest

The authors declare no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

10870_2023_983_MOESM1_ESM.cif

CCDC 2232999-2233001 contain the supplementary crystallographic data for complexes 2-4. These data can be obtained free of charge from The Cambridge Crystallographic Data Centre via https://www.ccdc.cam.ac.uk/depos it or from the Cambridge Crystallographic Data Centre, 12 Union Road, Cambridge CB2 1EZ, UK (Telephone: +44- 01223-762910; Fax: +44-01223-336033; E-mail: deposit@ccdc.cam.ac.uk) Supplementary file1 (CIF 3510 kb)

10870_2023_983_MOESM2_ESM.pdf

CCDC 2232999-2233001 contain the supplementary crystallographic data for complexes 2-4. These data can be obtained free of charge from The Cambridge Crystallographic Data Centre via https://www.ccdc.cam.ac.uk/depos it or from the Cambridge Crystallographic Data Centre, 12 Union Road, Cambridge CB2 1EZ, UK (Telephone: +44- 01223-762910; Fax: +44-01223-336033; E-mail: deposit@ccdc.cam.ac.uk) Supplementary file2 (PDF 200 kb)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mondal, D., Kumar, P., Mague, J.T. et al. 2,4,8,10-Tetra-tert-butyl-6-phenyldibenzo[d,g]-[1,3,6,2]dioxaselena-phosphocine Complexes: C–Se Bond Cleavage and Its Oxidative Addition to Form a Novel Octahedral Rhodium(III) Complex and Hirshfeld Analysis. J Chem Crystallogr 53, 438–452 (2023). https://doi.org/10.1007/s10870-023-00983-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10870-023-00983-3

Keywords

Navigation