Skip to main content
Log in

Synthesis, Structural Characterization, Hirshfeld Analysis and AIM Analysis of 2,4,8,10-tetra-tert-butyl-6-phenyldibenzo[d,g][1,3,6,2]-dioxa-selenaphosphocine and its Oxide and Selenide Derivatives

  • Original Paper
  • Published:
Journal of Chemical Crystallography Aims and scope Submit manuscript

Abstract

The reaction of 2,2′-selenobis(4,6-di-tert-butyl phenol) with equimolar amount of dichlorophenylphosphine afforded the 8-membered cyclic phosphonite, PhP{-OC6H2(tBu)2(µ-Se)(tBu)2C6H2O-} (1). The reaction of 1 with 30% aq H2O2 resulted in the oxidation of both phosphorus and selenium to give PhP(O){-OC6H2(tBu)2(µ-Se(O))(tBu)2C6H2O-} (2) in quantitative yield. Similar reaction of 1 with one equivalent of trimethylamine-N-oxide yielded the phosphine oxide derivative, PhP(O){-OC6H2(tBu)2(µ-Se)(tBu)2C6H2O-} (3). The reaction of 1 with gray selenium in 1:1 molar ratio afforded PhP(Se){-OC6H2(tBu)2(µ-Se)(tBu)2C6H2O-} (4) in good yield. All the derivatives have been structurally characterized. Both the compounds 2 and 3 crystallized with the asymmetric unit containing a whole molecule, whereas the compound 4 crystallized with a CH2Cl2 molecule. All of these molecules showed intermolecular C−H⋅⋅⋅O and C−H⋅⋅⋅Se hydrogen bonding interactions which play major role in the crystal packing to form a three-dimensional array. Hirshfeld surface analysis, dnorm and two-dimensional fingerprint plots were investigated to validate the contributions of the different intermolecular contacts within the supramolecular structure. A Hirshfeld surface analysis indicated that the most significant contributions to the crystal packing of 2 are from H⋅⋅⋅H (72%), C⋅⋅⋅H/H⋅⋅⋅C (15%), O⋅⋅⋅H/H⋅⋅⋅O (10.1%) and Se⋅⋅⋅H/H⋅⋅⋅Se (2.8%) contacts, and those for 3 are from H⋅⋅⋅H (74.1%), C⋅⋅⋅H/H⋅⋅⋅C (14.2%), O⋅⋅⋅H/H⋅⋅⋅O (5.7%) and Se⋅⋅⋅H/H⋅⋅⋅Se (5.7%) contacts, while those for 4 are from H⋅⋅⋅H (75.9%), C⋅⋅⋅H/H⋅⋅⋅C (10.5%), O⋅⋅⋅H/H⋅⋅⋅O (1%) and Se⋅⋅⋅H/H⋅⋅⋅Se (12.5%) contacts. Non-covalent interactions between C–H and O were observed in the molecular structures of 24. These weak interactions were also assessed by DFT calculations in terms of their non-covalent interaction plots and QTAIM analysis.

Graphical Abstract

This paper describes the synthesis and crystal structures of three selenaphosphocine derivatives. The reaction of 2,2′-selenobis(4,6-di-tert-butyl phenol) with equimolar amount of dichlorophenylphosphine produce the 8-membered cyclic phosphonite 1. The reaction of 1 with 30% aq H2O2 and elemental selenium afford three different macrocyclic compounds.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1
Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16

Similar content being viewed by others

Data Availability

Data set generated during and/or analysed during the current study are available from the corresponding author on reasonable request.

References

  1. Dai HF, Chen CH, Yeh WY (2011) Tetrairon Cluster Cp2Fe4(CO)4(C5H4PPh2)2 as flexible hemilabile tridentate ligand. Organometallics 30(12):3438–3443

    Article  CAS  Google Scholar 

  2. Hounjet LJ, McDonald R, Ferguson MJ, Cowie M (2011) Comparison of structure and reactivity of phosphine-amido and hemilabile phosphine-amine chelates of rhodium. Inorg Chem 50(12):5361–5378

    Article  CAS  PubMed  Google Scholar 

  3. Kunchur HS, Radhakrishna L, Pandey MK, Balakrishna MS (2021) Novel approach to benzo-fused 1,2-azaphospholene involving a Pd(II)-assisted tandem P–C bond cleavage and P–N bond formation reaction. Chem Commun 57(39):4835–4838

    Article  CAS  Google Scholar 

  4. Margalef J, Biosca M, de la Cruz Sánchez P, Faiges J, Pàmies O, Diéguez M (2021) Evolution in heterodonor P–N, P–S and P–O chiral ligands for preparing efficient catalysts for asymmetric catalysis. From design to applications. Coord Chem Rev 446:214120

    Article  CAS  Google Scholar 

  5. Mondal D, Balakrishna MS (2021) Recent advances in organophosphorus–chalcogen and organophosphorus–pincer based macrocyclic compounds and their metal complexes. Dalton Trans 50(19):6382–6409

    Article  CAS  PubMed  Google Scholar 

  6. Major MM, Császár Z, Bényei AC, Balogh S, Bakos J, Farkas G (2020) Backbone effects in the synthesis, coordination chemistry and catalytic properties of new chiral heterobidentate ligands with P,N and S,N donor sets. J Organomet Chem 921:121332

    Article  CAS  Google Scholar 

  7. Braunstein P, Naud F (2001) Hemilability of hybrid ligands and the coordination chemistry of oxazoline-based systems. Angew Chem Int Ed 40(4):680–699

    Article  CAS  Google Scholar 

  8. Munzeiwa WA, Omondi B, Nyamori VO (2020) Architecture and synthesis of P,N-heterocyclic phosphine ligands. Beilstein J Org Chem 16:362–383

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Suárez A, Méndez-Rojas MA, Pizzano A (2002) Electronic differences between coordinating functionalities of chiral phosphine—phosphites and effects in catalytic enantioselective hydrogenation. Organometallics 21(22):4611–4621

    Article  Google Scholar 

  10. Mochida T, Yamazaki S (2002) Mono- and diferrocenyl complexes with electron-accepting moieties formed by the reaction of ferrocenylalkynes with tetracyanoethylene. J Chem Soc Dalton Trans 18:3559–3564

    Article  Google Scholar 

  11. Rong MK, Holtrop F, Slootweg JC, Lammertsma K (2019) 1,3-P,N hybrid ligands in mononuclear coordination chemistry and homogeneous catalysis. Coord Chem Rev 380:1–16

    Article  CAS  Google Scholar 

  12. Radhakrishna L, Kunchur HS, Namdeo PK, Butcher RJ, Balakrishna MS (2020) New 1, 2, 3-triazole based bis-and trisphosphine ligands: synthesis, transition metal chemistry and catalytic studies. Dalton Trans 49(11):3434–3449

    Article  CAS  PubMed  Google Scholar 

  13. Kumaravel M, Mague JT, Balakrishna MS (2014) Chalcogenide derivatives of 1,2,5-triphenyl-1H-phosphole: structure and photophysical properties. Tetrahedron Lett 55(18):2957–2961

    Article  CAS  Google Scholar 

  14. Hua G, Cordes DB, Slawin AMZ, Woollins JD (2020) Novel five- and six-membered rings of phosphorus–selenium heterocycles from selenation of amido-schiff bases. ACS Omega 5(20):11737–11744

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Dutta DK, Woollins JD, Slawin AMZ, Konwar D, Sharma M, Bhattacharyya P, Aucott SM (2006) Rhodium(I) carbonyl complexes of mono selenium functionalized bis(diphenylphosphino)methane and bis(diphenylphosphino)amine chelating ligands and their catalytic carbonylation activity. J Organomet Chem 691(6):1229–1234

    Article  CAS  Google Scholar 

  16. Spokoyny AM, Rosen MS, Ulmann PA, Stern C, Mirkin CA (2010) Selective formation of Heteroligated Pt(II) complexes with bidentate phosphine-thioether (P,S) and phosphine-selenoether (P,Se) Ligands via the Halide-Induced ligand rearrangement reaction. Inorg Chem 49(4):1577–1586

    Article  CAS  PubMed  Google Scholar 

  17. Punji B, Mague JT, Balakrishna MS (2006) Synthesis of Neutral (PdII, PtII), Cationic (PdII), and Water-Induced Anionic (PdII) complexes containing New Mesocyclic Thioether—Aminophosphonite ligands and their application in the suzuki cross-coupling reaction. Inorg Chem 45(23):9454–9464

    Article  CAS  PubMed  Google Scholar 

  18. Punji B, Mague JT, Balakrishna MS (2007) Highly air-stable anionic mononuclear and neutral binuclear palladium(II) complexes for C–C and C–N bond-forming reactions. Inorg Chem 46(26):11316–11327

    Article  CAS  PubMed  Google Scholar 

  19. Kumar P, Kashid VS, Mague JT, Balakrishna MS (2014) An efficient approach for the synthesis of functionalized selenoethers and selenacalix[4]thiophenes, {2,5-(µ-Se)(3,4-dialkoxythiophene)}4. Tetrahedron Lett 55(38):5232–5235

    Article  CAS  Google Scholar 

  20. Bruker, (2008) APEX2, SAINT and SADABS. Bruker-AXS, Madison

    Google Scholar 

  21. Sheldrick GM (2008) SADABS, software for empirical absorption corrections. University of Göttingen, Germany

    Google Scholar 

  22. Sheldrick GM (2008) TWINABS. University of Göttingen, Germany

    Google Scholar 

  23. Sheldrick GM (2008) SHELXS and SHELXL. Acta Cryst A 64:112–122

    Article  CAS  Google Scholar 

  24. Frisch MJ, Trucks GW, Schlegel HB, Scuseria GE, Robb MA, Cheeseman JR, Scalmani G, Barone V, Mennucci B, Petersson GA, Nakatsuji H, Caricato M, Li X, Hratchian HP, Izmaylov AF, Bloino J, Zheng G, Sonnenberg JL, Hada M, Ehara M, Toyota K, Fukuda R, Hasegawa J, Ishida M, Nakajima T, Honda Y, Kitao O, Nakai H, Vreven T, Montgomery JA Jr, Peralta JE, Ogliaro F, Bearpark M, Heyd JJ, Brothers E, Kudin KN, Staroverov VN, Keith T, Kobayashi R, Normand J, Raghavachari K, Rendell A, Burant JC, Iyengar SS, Tomasi J, Cossi M, Rega N, Millam JM, Klene M, Knox JE, Cross JB, Bakken V, Adamo C, Jaramillo J, Gomperts R, Stratmann RE, Yazyev O, Austin AJ, Cammi R, Pomelli C, Ochterski JW, Martin RL, Morokuma K, Zakrzewski VG, Voth GA, Salvador P, Dannenberg JJ, Dapprich S, Daniels AD, Farkas O, Foresman JB, Ortiz JV, Cioslowski J, Fox DJ (2013) Gaussian 09. Gaussian Inc, Wallingford

    Google Scholar 

  25. Schäfer A, Huber C, Ahlrichs R (1994) Fully optimized contracted gaussian basis sets of triple zeta valence quality for atoms Li to Kr. J Chem Phys 100(8):5829–5835

    Article  Google Scholar 

  26. Bader RFW (1991) A quantum theory of molecular structure and its applications. Chem Rev 91(5):893–928

    Article  CAS  Google Scholar 

  27. Kumar PSV, Raghavendra V, Subramanian V (2016) Bader’s theory of atoms in Molecules (AIM) and its applications to Chemical Bonding. J Chem Sci 128(10):1527–1536

    Article  CAS  Google Scholar 

  28. Lu T, Chen F (2012) Multiwfn: a multifunctional wavefunction analyzer. J Comput Chem 33(5):580–592

    Article  PubMed  Google Scholar 

  29. Biegler-König F, Schönbohm J, Bayles D (2001) AIM2000—a program to analyze and visualize atoms in molecules. J Comp Chem 22(5):545–559

    Google Scholar 

  30. Humphrey W, Dalke A, Schulten K (1996) VMD: visual molecular dynamics. J Mol Graph 14(1):33–38

    Article  CAS  PubMed  Google Scholar 

  31. Zakai UI, Błoch-Mechkour A, Jacobsen NE, Abrell L, Lin G, Nichol GS, Bally T, Glass RS (2010) Synthesis and structure of m-Terphenyl Thio-, Seleno-, and telluroethers. J Org Chem 75(24):8363–8371

    Article  CAS  PubMed  Google Scholar 

  32. Potapov VA, Kurkutov EO, Musalov MV, Amosova SV (2010) Reactions of selenium dichloride and dibromide with divinyl sulfone: synthesis of novel four- and five-membered selenium heterocycles. Tetrahedron Lett 51(40):5258–5261

    Article  CAS  Google Scholar 

  33. Zade SS, Panda S, Singh HB, Wolmershäuser G (2005) Synthesis of diaryl selenides using the in situ reagent SeCl2. Tetrahedron Lett 46(4):665–669

    Article  CAS  Google Scholar 

  34. Mijanuddin M, Jana AD, Ray A, Drew MGB, Das KK, Pramanik A, Ali M (2009) Geometrical isomers of [TEAH][Co(LSe)2]·xH2O: synthesis, structural, spectroscopic and computational studies. Dalton Trans 26:5164–5170

    Article  Google Scholar 

  35. Spackman MA, Jayatilaka D (2009) Hirshfeld surface analysis. CrystEngComm 11(1):19–32

    Article  CAS  Google Scholar 

  36. McKinnon JJ, Jayatilaka D, Spackman MA (2007) Towards quantitative analysis of intermolecular interactions with Hirshfeld surfaces. Chem Commun 37:3814–3816

    Article  Google Scholar 

  37. Turner MJ, McKinnon JJ, Wolff SK, Grimwood DJ, Spackman PR, Jayatilaka D, Spackman MA (2017) CrystalExplorer21.5. The University of Western Australia

    Google Scholar 

Download references

Acknowledgements

MSB thanks the Science and Engineering Research Board, New Delhi, for financial support of this work through grant CRG/2019/000040. We also thank the Department of Chemistry Instrumentation Facilities, IIT Bombay, for spectral and analytical data. PK thanks CSIR, New Delhi for research fellowships (JRF and SRF), DM thanks the Department of Science and Technology, New Delhi, for the Inspire fellowship, HK thanks the IITB for a fellowship. J.T.M. thanks the Louisiana Board of Regents for the purchase of the CCD diffractometer and the Chemistry Department of Tulane University for support of the X-ray laboratory.

Author information

Authors and Affiliations

Authors

Contributions

PK, DM, HSK: Conceptualization, interpretation of the data, visualization, methodology and writing-original draft of the manuscript. JTM: Mounting the crystals, collecting data and solving the structures. MSB: Investigation, supervision, revision of the manuscript and approval of the final version of the manuscript.

Corresponding authors

Correspondence to Joel T. Mague or Maravanji S. Balakrishna.

Ethics declarations

Conflict of interest

The authors declare no conflict of interest.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 21.6 kb)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kumar, P., Mondal, D., Kunchur, H.S. et al. Synthesis, Structural Characterization, Hirshfeld Analysis and AIM Analysis of 2,4,8,10-tetra-tert-butyl-6-phenyldibenzo[d,g][1,3,6,2]-dioxa-selenaphosphocine and its Oxide and Selenide Derivatives. J Chem Crystallogr 53, 321–335 (2023). https://doi.org/10.1007/s10870-022-00972-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10870-022-00972-y

Keywords

Navigation