Skip to main content
Log in

Synthesis, Structural Characterization and Hirshfeld Analysis of Ag(I), Au(I), Cd(II) and Hg(II) Complexes Containing Hemilabile- Ferrocenylbisphosphine [Fe{C5H4P(C6H4CH2NMe2-o)2}2]

  • Original Paper
  • Published:
Journal of Chemical Crystallography Aims and scope Submit manuscript


The reaction between bis(phosphino)ferrocene, [Fe{C5H4P(C6H4CH2NMe2-o)2}2] (1) and AgOTf resulted in disilver complex [(AgOTf)2{µ-Fe{C5H4P(C6H4CH2NMe2)2}2}] (2) which on further treatment with 2,2′-bipyrdine yielded a mixed-ligand complex [Ag2(bipy)2{µ-Fe{C5H4P(C6H4CH2NMe2)2}2}](OTf)2 (3). Reaction of 1 with AuCl(SMe2) in 1:2 molar ratio afforded a digold complex [(AuCl)2Fe{C5H4P(C6H4CH2NMe2)2}2] (4). Treatment of 4 with anhydrous CdCl2 resulted in heterometallic complex [Fe{C5H4P(AuCl)(C6H4CH2NMe2)2(CdCl2)}2] (5). The reactions of 1 with anhydrous CdI2 and HgI2 in 1:2 molar ratios yielded bimetallic complexes [Fe{C5H4P(CdI2)(C6H4CH2NMe2)2}2] (6) and [Fe{C5H4P(HgI2)(C6H4CH2NMe2)2}2] (7), respectively. The molecular structures of 3, 4 and 7 were confirmed by single crystal X-ray analysis. Complexes 3 and 7 crystallized in the triclinic space group with P-1, whereas 4 crystallized in the monoclinic space group with C2/c. Single crystals suitable for X-ray crystallography were obtained using diffusion method where a solution of [Fe{C5H4P(C6H4CH2NMe2)2}2] (1) in dichloromethane was layered on a solution of CdI2 and HgI2 in methanol and stored at room temperature for 24 h, resulted in yellow plates of 6 and 7, respectively. All complexes crystallized with the asymmetric unit containing half a molecule and with the Fe atom on an inversion centre. A Hirshfeld surface analysis indicated that the most significant contributions to the crystal packing of 3 are from H‧‧‧H (50.2%), C‧‧‧H/H‧‧‧C (8.3%), Cl‧‧‧H/H‧‧‧Cl (12.1%), O‧‧‧H/H‧‧‧O (11.3%), F‧‧‧H/H‧‧‧F (9.0%) contacts, while those for 4 are from H‧‧‧H (73.7%), C‧‧‧H/H‧‧‧C (8.9%), Cl‧‧‧H/H‧‧‧Cl (14.5%), Au‧‧‧H/H‧‧‧Au (1.8%) and N‧‧‧H/H‧‧‧N (0.8%) contacts, and those for 7 are from H‧‧‧H (65.5%), C‧‧‧H/H‧‧‧C (6.6%), I‧‧‧H/H‧‧‧I (24.1%) and I‧‧‧C/C‧‧‧I (2.9%) contacts.

Graphical Abstract

Crystal structures of silver(I), gold(I) and mercury(II) complexes containing [Fe{C5H4P(C6H4CH2NMe2)2}2] (1) are described.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1
Scheme 2
Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19

Similar content being viewed by others

Data Availability

Data set generated during and/or analysed during the current study are available from the corresponding author on reasonable request.


  1. Braunstein P, Naud F (2001) Hemilability of hybrid ligands and the coordination chemistry of oxazoline-based systems. Angew Chem Int Ed 40(4):680–699

    Article  CAS  Google Scholar 

  2. Fache F, Schulz E, Tommasino ML, Lemaire M (2000) Nitrogen-containing ligands for asymmetric homogeneous and heterogeneous catalysis. Chem Rev 100(6):2159–2232

    Article  CAS  PubMed  Google Scholar 

  3. Slone CS, Weinberger DA, Mirkin CA (1999) The transition metal coordination chemistry of hemilabile ligands. Prog Inorg Chem 48:233–350

    CAS  Google Scholar 

  4. Yang S-Q, Yao Y-Q, Chen X-C, Lu Y, Zhao X-L, Liu Y (2021) Pd-catalyst containing a hemilabile P,C-hybrid ligand in amino dicarbonylation of aryl halides for synthesis of α- ketoamides. Organometallics 40(8):1032–1041

    Article  CAS  Google Scholar 

  5. Adams GM, Weller AS (2018) POP-type ligands: variable coordination and hemilabile behaviour. Coord Chem Rev 355:150–172

    Article  CAS  Google Scholar 

  6. Gusev OV, Peganova TyA, Kalsin AM, Vologdin NV, Petrovskii PV, Lyssenko KA, Tsvetkov AV, Beletskaya IP (2006) Palladium complexes with metallocene-bridged bidentate diphosphine ligands: synthesis, structure, and catalytic activity in amination and cross- coupling reactions. Organometallics 25(11):2750–2760

    Article  CAS  Google Scholar 

  7. Shaw AP, Norton JR, Buccella D, Sites LA, Kleinbach SS, Jarem DA, Bocage KM, Nataro C (2009) Synthesis, electrochemistry, and reactivity of half-sandwich ruthenium complexes bearing metallocene-based bisphosphines. Organometallics 28(13):3804–3814

    Article  CAS  Google Scholar 

  8. Arlow SI, Hartwig JF (2017) Synthesis, characterization, and reactivity of palladium fluoroenolate complexes. J Am Chem Soc 139(45):16088–16091

    Article  CAS  PubMed  Google Scholar 

  9. Zhang T, Lee VY, Morisako S, Aoyagi S, Sasamori T (2021) Ferrocene-based phosphenium ion with intramolecular phosphine coordination. Eur J Inorg Chem 38:3988–3991

    Article  Google Scholar 

  10. Deng WP, You SL, Hou XL, Dai LX, Yu YH, Xia W, Sun J (2001) Importance of planar chirality in chiral catalysts with three chiral elements: the role of planar chirality in 2‘- substituted 1,1‘-P,N-ferrocene ligands on the enantioselectivity in Pd-catalyzed allylic substitution. J Am Chem Soc 123(27):6508–6519

    Article  CAS  PubMed  Google Scholar 

  11. Dai LX, Tu T, You SL, Deng WP, Hou XL (2003) Asymmetric catalysis with chiral ferrocene ligands. Acc Chem Res 36(9):659–667

    Article  CAS  PubMed  Google Scholar 

  12. Ito Y, Sawamura M, Hayashi T (1986) Catalytic asymmetric aldol reaction: reaction of aldehydes with isocyanoacetate catalyzed by a chiral ferrocenylphosphine-gold(I) complex. J Am Chem Soc 108(20):6405–6406

    Article  CAS  Google Scholar 

  13. Pérez-Sánchez JC, Herrera RP, Gimeno MC (2022) Ferrocenyl Gold Complexes as Efficient Catalysts. Eur J Inorg Chem 2022:e202101067

    Article  Google Scholar 

  14. Škoch K, Císařová I, Štěpnička P (2015) Synthesis and catalytic use of gold(I) complexes containing a hemilabile phosphanylferrocene nitrile donor. Chem Eur J 21(45):15998–16004

    Article  PubMed  Google Scholar 

  15. Radhakrishna L, Kunchur HS, Namdeo PK, Butcher RJ, Balakrishna MS (2020) New 1,2,3- triazole based bis- and trisphosphine ligands: synthesis, transition metal chemistry and catalytic studies. Dalton Trans 49(11):3434–3449

    Article  CAS  PubMed  Google Scholar 

  16. Kumar S, Mondal D, Balakrishna MS (2018) Diverse architectures and luminescence properties of group 11 complexes containing pyrimidine-based phosphine, N- ((Diphenylphosphine)methyl)pyrimidin-2-amine. ACS Omega 3(12):16601–16614

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Radhakrishna L, Pandey MK, Balakrishna MS (2018) 1,2,3-Triazole based bisphosphine, 5- (diphenylphosphanyl)-1-(2-(diphenylphosphanyl)-phenyl)-4-phenyl-1H-1,2,3-triazole: an ambidentate ligand with switchable coordination modes. RSC Adv 8(45):25704–25718

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Kumaravel M, Kumar P, Balakrishna MS (2014) Application of bisphosphomide-palladium(II) pincer complex in Suzuki–Miyaura cross-coupling reaction under microwave irradiation. J Chem Sci 126(3):711–716

    Article  CAS  Google Scholar 

  19. Kunchur HS, Radhakrishna L, Pandey MK, Balakrishna MS (2021) Novel approach to benzo- fused 1,2-azaphospholene involving a Pd(II)-assisted tandem P–C bond cleavage and P–N bond formation reaction. Chem Commun 57(39):4835–4838

    Article  CAS  Google Scholar 

  20. Radhakrishna L, Kote BS, Kunchur HS, Pandey MK, Mondal D, Balakrishna MS (2022) 1,2,3- Triazole based ligands with phosphine and pyridine functionalities: synthesis, PdII and PtII chemistry and catalytic studies. Dalton Trans 51(14):5480–5493

    Article  CAS  PubMed  Google Scholar 

  21. Namdeo PK, Sheokand S, Kote BS, Radhakrishna L, Kunchur HS, Saini P, Ramakrishnan S, Balakrishna MS (2022) RuII complexes of 1,2,3-triazole appended tertiary phosphines, [P(Ph){(o-C6H4)(1,2,3-N3C(Ph)CH}2] and [P(Ph){o-C6H4(CCH)-(1,2,3-N3-Ph)}2]: highly active catalysts for transfer hydrogenation of carbonyl/nitro compounds and for α-alkylation of ketones. Dalton Trans 51(17):6795–6808

    Article  CAS  PubMed  Google Scholar 

  22. Kunchur HS, Balakrishna MS (2022) Platinum assisted tandem P–C bond cleavage and P– N bond formation in amide functionalized bisphosphine o-Ph2PC6H4C(O)N(H)C6H4PPh2-o: synthesis, mechanistic, and catalytic studies. Inorg Chem 61(2):857–868

    Article  CAS  PubMed  Google Scholar 

  23. Rao S, Mague JT, Balakrishna MS (2013) Synthesis, transition metal chemistry and catalytic reactions of ferrocenylbis(phosphonite), [Fe{C5H4P(OC6H3(OMe-o)(C3H5-p))2}2]. Dalton Trans 42(32):11695–11708

    Article  CAS  PubMed  Google Scholar 

  24. Prasad PS, Balakrishna MS (2018) Synthesis and transition metal chemistry of ferrocenylbis(benzo-oxazaphosphininone). J Organomet Chem 862:31–39

    Article  CAS  Google Scholar 

  25. Sameer Prasad P, Pandey MK, Balakrishna MS (2019) Synthesis and transition metal complexes of 1,1′-bis(diphenylethynylphosphino)ferrocene. Polyhedron 158:173–182

    Article  CAS  Google Scholar 

  26. Siddiqui MM, Radhakrishna L, Mague JT, Balakrishna MS (2016) 1,1′- Bis(dipyrrolylphosphino)ferrocene: synthesis, coordination chemistry and structural studies. J Organomet Chem 824:15–24

    Article  CAS  Google Scholar 

  27. Punji B, Mague JT, Balakrishna MS (2007) Thioether-functionalized ferrocenyl- bis(phosphonite), Fe{(C5H4)P(– OC10H6(µ-S)C10H6O–)}2: synthesis, coordination behavior, and application in suzuki-miyaura cross-coupling reactions. Inorg Chem 46(24):10268–10275

    Article  CAS  PubMed  Google Scholar 

  28. Siddiqui MM, Mobin SM, Senkovska I, Kaskel S, Balakrishna MS (2014) Novel zeotype frameworks with soft cyclodiphosphazane linkers and soft Cu4X4 clusters as nodes. Chem Commun 50(82):12273–12276

    Article  CAS  Google Scholar 

  29. Kunchur HS, Mondal D, Rao S, Mague JT, Balakrishna MS (2021) Synthesis, structural, characterization and Hirshfeld analysis of a bisselenide and a zinc complex of a new hemilabile ferrocenylbisphosphane, [Fe{C5H4P(C6H4CH2NMe2-o)2}2]. Acta Crystallogr C Struct Chem 77(11):725–733

    Article  CAS  PubMed  Google Scholar 

  30. Brandys M-C, Jennings MC, Puddephatt RJ (2000) Luminescent gold(I) macrocycles with diphosphine and 4,4′-bipyridyl ligands. J Chem Soc Dalton Trans 24:4601–4606

    Article  Google Scholar 

  31. Bruker (2008,  2009) APEX2, version 2008.6-1, 2009.5-1, 2009.9-0, 2009.11-0, 2010.11-3; Bruker-AXS: Madison, WI

  32. Sheldrick GM (2008) 2009) SADABS, version 2008/2 and version 2009/2. University of Göttingen, Germany

  33. Sheldrick GM (2008) TWINABS, version 2008/4; University of Göttingen. Germany

  34. Sheldrick GM (2008) SHELXS and SHELXL. Acta Cryst A 64:112–122

    Article  CAS  Google Scholar 

  35. Spek A (2015) PLATON SQUEEZE: a tool for the calculation of the disordered solvent contribution to the calculated structure factors. Acta Cryst C 71(1):9–18

    Article  CAS  Google Scholar 

  36. Lang H, Leschke M, Rheinwald G, Melter M (1998) Monomeric T-shaped planar silver(I) carboxylate and silver(I) halide complexes. Inorg Chem Commun 1(7):254–256

    Article  CAS  Google Scholar 

  37. Ganesamoorthy C, Balakrishna MS, Mague JT, Tuononen HM (2008) Bi-, Tetra-, and hexanuclear AuI and binuclear AgI complexes and AgI coordination polymers containing phenylaminobis(phosphonite), PhN{P(OC6H4OMe-o)2}2, and pyridyl ligands. Inorg Chem 47(7):2764–2776

    Article  CAS  PubMed  Google Scholar 

  38. Canales F, Gimeno MC, Jones PG, Laguna A, Sarroca C (1997) Substitution reaction studies on [Au2Cl2(µ-dppf)] (dppf = 1,1′-Bis(diphenylphosphino)ferrocene). Synthesis of the first gold(I) complex with a µ3-2-pyridinethiolate ligand. Inorg Chem 36(23):5206–5211

    Article  CAS  Google Scholar 

  39. Spackman MA, Jayatilaka D (2009) Hirshfeld surface analysis. CrystEngComm 11(1):19–32

    Article  CAS  Google Scholar 

  40. McKinnon JJ, Jayatilaka D, Spackman MA (2007) Towards quantitative analysis of intermolecular interactions with Hirshfeld surfaces. Chem Commun 37:3814–3816

    Article  Google Scholar 

  41. Turner MJ, McKinnon JJ, Wolff SK, Grimwood DJ, Spackman PR, Jayatilaka D, Spackman MA (2017) CrystalExplorer21.5. The University of Western Australia

    Google Scholar 

  42. Bhat SA, Mague JT, Balakrishna MS (2015) Gold(I) complexes of bisphosphines with bis(azol- 1-yl)methane backbone: structure of a rare dinuclear gold(I) complex [(Au2Cl){CH2(1,2- C3H2N2PPh2)2}3Cl]. Dalton Trans 44(40):17696–17703

    Article  CAS  PubMed  Google Scholar 

Download references


MSB thanks the Science & Engineering Research Board, New Delhi, for financial support of this work through grant CRG/2019/000040. We also thank the Department of Chemistry Instrumentation Facilities, IIT Bombay, for spectral and analytical data. DM thanks the Department of Science and Technology, New Delhi, for an Inspire fellowship. JTM thanks the Louisiana Board of Regents for the purchase of the CCD diffractometer and the Chemistry Department of Tulane University for support of the X-ray laboratory.

Author information

Authors and Affiliations



DM, SR: Conceptualization, interpretation of the data, visualization, methodology and writing-original draft of the manuscript. JTM: Mounting the crystals, collecting data and solving the structures. MSB: Investigation, supervision, revision of the manuscript and approval of the final version of the manuscript.

Corresponding authors

Correspondence to Joel T. Mague or Maravanji S. Balakrishna.

Ethics declarations

Conflict of interest

The authors declare no conflict of interest.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

This paper describes the synthesis and crystal structural analysis of AuI, CdII and HgII complexes of hemilabile- ferrocenylbisphosphine [Fe{C5H4P(C6H4CH2NMe2-o)2}2]

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mondal, D., Rao, S., Mague, J.T. et al. Synthesis, Structural Characterization and Hirshfeld Analysis of Ag(I), Au(I), Cd(II) and Hg(II) Complexes Containing Hemilabile- Ferrocenylbisphosphine [Fe{C5H4P(C6H4CH2NMe2-o)2}2]. J Chem Crystallogr 53, 273–292 (2023).

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: