Skip to main content
Log in

Crystal Structure and Hirshfeld Analysis of a Poorly Water Soluble Bis(ligand)copper(II) Complex Containing the Metallophore Pyridine-2-Carboxaldehyde 2-Furoyl Hydrazone

  • Brief Communication
  • Published:
Journal of Chemical Crystallography Aims and scope Submit manuscript

Abstract

The crystal structure of a novel bis(ligand)copper(II) complex of the pyridine-2-carboxaldehyde 2-furoyl hydrazone (HPCFur) metallophore is described, altogether with its Hirshfeld surface analysis. The isolated compound crystallizes in the monoclinic system, space group P21/c, with four [Cu(PCFur)2] molecules in the asymmetric unit. Symmetry around copper is distorted octahedral. HPCFur coordinates in its deprotonated, iminolate form, which impacts the O1−C7 and N2−N3 distances in both ligand units. The complex exhibits a variety of weak, non-conventional intermolecular hydrogen bonds. Hirshfeld analysis and fingerprint plots indicate that, overall, hydrogen bond interactions are responsible for almost 50% of the crystal 3D arrangement, while nondirectional H···H contacts account for 38.0%. To the best of our knowledge, this is the first description of a copper(II) complex containing this ligand. The structural characterization of this poorly water soluble species contributes to a better understanding of the intricate equilibria that take place in biologically relevant ternary peptide/protein-copper-hydrazone systems.

Graphical Abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1
Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Data Availability

CCDC 2176002 contains the supplementary crystallographic data for 1. These data can be obtained free of charge via www.ccdc.cam.ac.uk/data_request/cif, or by emailing data_request@ccdc.cam.ac.uk, or by contacting Cambridge Crystallographic Data Centre, 12 Union Road, Cambridge CB2 1EZ, UK; fax: +44 1223 336,033.

References

  1. Cukierman DS, Rey NA (2022) Tridentate N-acylhydrazones as moderate ligands for the potential management of cognitive decline associated with metal-enhanced neuroaggregopathies. Front Neurol. https://doi.org/10.3389/fneur.2022.828654

    Article  PubMed  PubMed Central  Google Scholar 

  2. Cukierman DS, Bodnár N, Evangelista BN, Nagy L, Kállay C, Rey NA (2019) Impact of pyridine-2-carboxaldehyde-derived aroylhydrazones on the copper-catalyzed oxidation of the M112A PrP. J Biol Inorg Chem 24:1231–1244. https://doi.org/10.1007/s00775-019-01700-2

    Article  CAS  PubMed  Google Scholar 

  3. Cukierman DS, Bodnár N, Diniz R, Nagy L, Kállay C, Rey NA (2022) Full equilibrium picture in aqueous binary and ternary systems involving copper(II), 1-methylimidazole-containing hydrazonic ligands, and the 103–112 human prion protein fragment. Inorg Chem 61:723–737

    Article  CAS  PubMed  Google Scholar 

  4. Gholivand K, Farshadfar K, Roe SM, Hosseini M, Gholami A (2016) Investigation of structure-directing interactions within copper(i) thiocyanate complexes through X-ray analyses and non-covalent interaction (NCI) theoretical approach. CrystEngComm 18:7104–7115

    Article  CAS  Google Scholar 

  5. Csire G, Nagy L, Várnagy K, Kállay C (2017) Copper(II) interaction with the human prion 103–112 fragment—coordination and oxidation. J Inorg Biochem 170:195–201. https://doi.org/10.1016/j.jinorgbio.2017.02.018

    Article  CAS  PubMed  Google Scholar 

  6. Bruker Apex-III (2012). In: Inc BA (ed) Madison, Wisconsin, USA

  7. Krause L, Herbst-Irmer R, Sheldrick GM, Stalke D (2015) Comparison of silver and molybdenum microfocus X-ray sources for single-crystal structure determination. J Appl Crystallogr 48:3–10. https://doi.org/10.1107/S1600576714022985

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Sheldrick GM (2008) A short history of SHELX. Acta Crystallogr A 64:112–122. https://doi.org/10.1107/S0108767307043930

    Article  CAS  PubMed  Google Scholar 

  9. Farrugia LJ (2012) WinGX and ORTEP for windows: an update. J Appl Crystallogr 45:849–854

    Article  CAS  Google Scholar 

  10. Hubschle CB, Sheldrick GM, Dittrich B (2011) ShelXle: a Qt graphical user interface for SHELXL. J Appl Crystallogr 44:1281–1284. https://doi.org/10.1107/S0021889811043202

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Spackman PR, Turner MJ, McKinnon JJ, Wolff SK, Grimwood DJ, Jayatilaka D, Spackman MA (2021) CrystalExplorer: a program for Hirshfeld surface analysis, visualization and quantitative analysis of molecular crystals. J Appl Crystallogr 54:1006–1011. https://doi.org/10.1107/S1600576721002910

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Macrae CF, Edgington PR, McCabe P, Pidcock E, Shields GP, Taylor R, Towler M, van de Streek J (2006) Mercury: visualization and analysis of crystal structures. J Appl Crystallogr 39:453–457. https://doi.org/10.1107/S002188980600731X

    Article  CAS  Google Scholar 

  13. Spek A (2009) Structure validation in chemical crystallography. Acta Crystallogr D 65:148–155. https://doi.org/10.1107/S090744490804362X

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Doebelin N, Kleeberg R (2015) Profex: a graphical user interface for the Rietveld refinement program. J Appl Crystallogr 48:1573–1580. https://doi.org/10.1107/S1600576715014685

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Coelho A (2018) TOPAS and TOPAS-academic: an optimization program integrating computer algebra and crystallographic objects written in C++. J Appl Crystallogr 51:210–218. https://doi.org/10.1107/S1600576718000183

    Article  CAS  Google Scholar 

  16. Armstrong CM, Bernhardt PV, Chin P, Richardson DR (2003) Structural variations and formation constants of first-row transition metal complexes of biologically active aroylhydrazones. Eur J Inorg Chem 2003:1145–1156

    Article  Google Scholar 

  17. Bruno IJ, Cole JC, Edgington PR, Kessler M, Macrae CF, McCabe P, Pearson J, Taylor R (2002) New software for searching the Cambridge Structural Database and visualizing crystal structures. Acta Crystallogr B 58:389–397. https://doi.org/10.1107/s0108768102003324

    Article  PubMed  Google Scholar 

  18. Hauser-Davis RA, de Freitas LV, Cukierman DS, Cruz WS, Miotto MC, Landeira-Fernandez J, Valiente-Gabioud AA, Fernández CO, Rey NA (2015) Disruption of zinc and copper interactions with Aβ(1–40) by a non-toxic, isoniazid-derived, hydrazone: a novel biometal homeostasis restoring agent in Alzheimer’s disease therapy? Metallomics 7:743–747. https://doi.org/10.1039/c5mt00003c

    Article  CAS  PubMed  Google Scholar 

  19. Cukierman DS, Pinheiro AB, Castiñeiras-Filho SL, da Silva AS, Miotto MC, De Falco A, de Ribeiro T, Maisonette S, da Cunha AL, Hauser-Davis RA, Landeira-Fernandez J, Aucélio RQ, Outeiro TF, Pereira MD, Fernández CO, Rey NA (2017) A moderate metal-binding hydrazone meets the criteria for a bioinorganic approach towards Parkinson’s disease: therapeutic potential, blood-brain barrier crossing evaluation and preliminary toxicological studies. J Inorg Biochem 170:160–168. https://doi.org/10.1016/j.jinorgbio.2017.02.020

    Article  CAS  PubMed  Google Scholar 

  20. Cukierman DS, Lázaro DF, Sacco P, Ferreira PR, Diniz R, Fernández CO, Outeiro TF, Rey NA (2020) X1INH, an improved next-generation affinity-optimized hydrazonic ligand, attenuates abnormal copper(I)/copper(II)-α-Syn interactions and affects protein aggregation in a cellular model of synucleinopathy. Dalton Trans 49:16252–16267. https://doi.org/10.1039/d0dt01138j

    Article  CAS  PubMed  Google Scholar 

  21. Alderighi L, Gans P, Ienco A, Peters D, Sabatini A, Vacca A (1999) Hyperquad simulation and speciation (HySS): a utility program for the investigation of equilibria involving soluble and partially soluble species. Coord Chem Rev 184:311–318

    Article  CAS  Google Scholar 

  22. Scardi P, Leoni M, Delhez R (2004) Line broadening analysis using integral breadth methods: a critical review. J Appl Crystallogr 37:381–390. https://doi.org/10.1107/S0021889804004583

    Article  CAS  Google Scholar 

Download references

Acknowledgements

All authors are grateful to the scientific Brazilian agency CNPq (Conselho Nacional de Desenvolvimento Científico e Tecnológico) for the research fellowships and scholarship awarded. NAR is also grateful to FAPERJ (Fundação Carlos Chagas Filho de Amparo à Pesquisa do Estado do Rio de Janeiro) for the “Cientista do Nosso Estado” fellowship granted. We would like to acknowledge Ministério da Ciência e Tecnologia (MCT) and Financiadora de Estudos e Projetos (FINEP)—Grant # Convênio: 01.11.0100.00. We thank Centro Nacional de Biologia Estrutural e Bioimagem (CENABIO) for the support with the X-ray diffraction facility (D8-Venture). The authors are also thankful to Prof. Csilla Kallay, for providing the decapeptide. CBPL acknowledges the Brazilian Chemical Society and Royal Society of Chemistry for the prize “Young Researcher of Royal Society of Chemistry—RASBQ 2021”.

Author information

Authors and Affiliations

Authors

Contributions

DSC and NAR conceived the experiments, interpreted the data, and wrote the paper. DSC also performed the syntheses of 1. CBPL and RRA performed the XRD measurements, structure refinement and analyses, and wrote the paper for the crystallography part.

Corresponding authors

Correspondence to Daphne S. Cukierman or Nicolás A. Rey.

Ethics declarations

Conflict of interest

The authors declare no conflict of interest.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Cukierman, D.S., Ligiero, C.B.P., de Avillez, R.R. et al. Crystal Structure and Hirshfeld Analysis of a Poorly Water Soluble Bis(ligand)copper(II) Complex Containing the Metallophore Pyridine-2-Carboxaldehyde 2-Furoyl Hydrazone. J Chem Crystallogr 53, 8–15 (2023). https://doi.org/10.1007/s10870-022-00955-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10870-022-00955-z

Keywords

Navigation