Skip to main content
Log in

Ni-Na Coordination Polymer Bridged by Dicyanamide: Synthesis, Structures, Spectra and Thermal Stability

  • Original Paper
  • Published:
Journal of Chemical Crystallography Aims and scope Submit manuscript

Abstract

One Ni(II)-Na(I) complex namely {[NiII-L-NaI(dca)]2}n [H2L = 1,2-ethanediylbis(2-iminomethylene-6-methoxy-phenol)] was synthesized under mild conditions at room temperature and characterized by elemental analysis, infrared spectroscopy, X-ray diffraction and thermogravimetric analysis. Single crystal X-ray diffraction analyses show that Ni(II) centers are in four-coordinate D4h geometry and Na(I) centers are in a six-coordinate slightly distorted pentagonal pyramidal C5v geometry in the complex. The basic structural components of the complex are the [NiII-L-NaI] units, which are further connected by the dicyanamide through μ1,5 mode between the Na centers to form 1D chain structures. Thermogravimetric analysis indicate that complex 1 shows good thermal stability.

Graphical Abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Scheme 1
Scheme 2
Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

Data Availability

The crystallographic data CCDC-2121954 (1) for this paper can be obtained free of charge from The Cambridge Crystallographic Data Centre via www.ccdc.cam.ac.uk/data_request/cif.

References

  1. Seoane B, Castellanos S, Dikhtiarenko A, Kapteijn F, Gascon J (2016) Coord Chem Rev 307:147–187

    Article  CAS  Google Scholar 

  2. Zhang YM, Yuan S, Day G, Wang X, Yang XY, Zhou HC (2018) Coord Chem Rev 354:28–45

    Article  CAS  Google Scholar 

  3. McAdams SG, Ariciu AM, Kostopoulos AK, Walsh JPS, Tuna F (2017) Coord Chem Rev 346:216–239

    Article  CAS  Google Scholar 

  4. Li H, Wang KC, Sun YJ, Lollar CT, Li JL, Zhou HC (2018) Mater Today 21:108–121

    Article  CAS  Google Scholar 

  5. Song S, Yang W, Pan QH, Zhang H (2019) Inorg Chem Front 6:1924–1937

    Article  Google Scholar 

  6. Dhakshinamoorthy A, Li Z, Garcia H (2018) Chem Soc Rev 47:8134–8172

    Article  CAS  PubMed  Google Scholar 

  7. Zhao X, Wang YX, Li DS, Bu XH, Feng PY (2018) Adv Mater 30:1705189

    Article  Google Scholar 

  8. Liu XY, Ma XF, Yuan WZ, Cen PP, Zhang YQ, Soria JF, Xie G, Chen SP, Pardo E (2018) Inorg Chem 57:14843–14851

    Article  CAS  PubMed  Google Scholar 

  9. Liu AJ, Xu F, Han SD, Pan J, Wang GM (2020) Cryst Growth Des 20:7350–7355

    Article  CAS  Google Scholar 

  10. Lee E, Hongu H, Temma H, Toya M, Ikeda M, Kuwahara S, Habata Y (2020) Cryst Growth Des 20:3284–3292

    Article  CAS  Google Scholar 

  11. Roy M, Adhikary A, Mondal AK, Mondal R (2018) ACS Omega 3:15315–15324

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Zhang SL, Li SS, Zeng SY, Shi Y, Wang DQ, Chen L (2020) New J Chem 44:2408–2413

    Article  CAS  Google Scholar 

  13. Zhang SL, Li SS, Li XC, Hou XH, Wang ZC, Ji XY, Chen L (2020) New J Chem 44:19996–20000

    Article  CAS  Google Scholar 

  14. Zhang SL, Liu ZY, Guo S, Gu SY, Shi Y, Li SS (2021) J Coord Chem 74:1457–1465

    Article  CAS  Google Scholar 

  15. Zhang SL, Li XC, Gu SY, Guo S, Liu ZY, Zeng SY, Li SS (2021) New J Chem 45:21599–21605

    Article  CAS  Google Scholar 

  16. Yang XP, Jones RA, Huang SM (2014) Coord Chem Rev 273–274:63–75

    Article  Google Scholar 

  17. Andruh M (2015) Dalton Trans 44:16633–16653

    Article  CAS  PubMed  Google Scholar 

  18. Mahapatra P, Ghosh S, Koizumi N, Kanetomo T, Ishida T, Drew MGB, Ghosh A (2017) Dalton Trans 46:12095–12105

    Article  CAS  PubMed  Google Scholar 

  19. Cosquer G, Pointillart F, Le Gal Y, Golhen S, Cador O, Ouahab L (2011) Chem Eur J 17:12502–12511

    Article  CAS  PubMed  Google Scholar 

  20. Shiga T, Miyasaka H, Yamashita M, Morimoto M, Irie M (2011) Dalton Trans 40:2275–2282

    Article  CAS  PubMed  Google Scholar 

  21. Kajiwara T, Takahashi K, Hiraizumi T, Takaishi S, Yamashita M (2009) Polyhedron 28:1860–1863

    Article  CAS  Google Scholar 

  22. Piquer LR, Sañudo EC (2015) Dalton Trans 44:8771–8780

    Article  Google Scholar 

  23. Liu K, Shi W, Cheng P (2015) Coord Chem Rev 289–290:74–122

    Article  Google Scholar 

  24. Huang XC, Zhao XH, Shao D, Wang XY (2017) Dalton Trans 46:7232–7241

    Article  CAS  PubMed  Google Scholar 

  25. Sutter JP, Dhers S, Rajamani R, Ramasesha S, Costes JP, Duhayon C, Vendier L (2009) Inorg Chem 48:5820–5828

    Article  CAS  PubMed  Google Scholar 

  26. Dhers S, Costes JP, Guionneau P, Paulsen C, Vendier L, Sutter JP (2015) Chem Commun 51:7875–7878

    Article  CAS  Google Scholar 

  27. Costes JP, Ladeira SM, Vendier L, Maurice R, Wernsdorfer W (2019) Dalton Trans 48:3404–3414

    Article  CAS  PubMed  Google Scholar 

  28. Costes JP, Dahan F, Duhayon C, Mota AJ (2015) Polyhedron 96:51–56

    Article  CAS  Google Scholar 

  29. Dey A, Bag P, Kalita P, Chandrasekhar V (2021) Coord Chem Rev 432:213707

    Article  CAS  Google Scholar 

  30. Mayans J, Saez Q, Bardia MF, Escuer A (2019) Dalton Trans 48:641–652

    Article  CAS  PubMed  Google Scholar 

  31. Maity S, Bhunia P, Ichihashi K, Ishida T, Ghosh A (2020) New J Chem 44:6197–6205

    Article  CAS  Google Scholar 

  32. Mahapatra P, Koizumi N, Kanetomo T, Ishida T, Ghosh A (2019) New J Chem 43:634–643

    Article  CAS  Google Scholar 

  33. Ohba M, Okawa H (2000) Coord Chem Rev 198:313–328

    Article  CAS  Google Scholar 

  34. Batten SR, Murray KS (2003) Coord Chem Rev 246:103–130

    Article  CAS  Google Scholar 

  35. Costes J-P, Novitchi G, Shova S, Dahan F, Donnadieu B, Tuchagues J-P (2004) Inorg Chem 43:7792–7799

    Article  CAS  PubMed  Google Scholar 

  36. Ion AE, Nica S, Madalan AM, Maxim C, Julve M, Lloret F, Andruh M (2014) CrystEngComm 16:319–327

    Article  CAS  Google Scholar 

  37. Mączka M, Ptak M, Gągor A, Sieradzki A, Peksa P, Usevicius G, Simenas M, Leite FF, Paraguassu W (2019) J Mater Chem C 7:2408

    Article  Google Scholar 

  38. Roy S, Choubey S, Bhar K, Sikdar N, Costa JS, Mitra P, Ghosh BK (2015) Dalton Trans 44:7774–7776

    Article  CAS  PubMed  Google Scholar 

  39. Wang JL, Liu Q, Lv XJ, Duan CY, Liu T (2017) Inorg Chem Commun 85:37–40

    Article  CAS  Google Scholar 

  40. Pasatoiu TD, Sutter JP, Madalan AM, Fellah FZC, Duhayon G, Andruh M (2011) Inorg Chem 50:5890–5898

    Article  CAS  PubMed  Google Scholar 

  41. SAINT Version 7.68A. Bruker AXS, Inc., Madison, WI, 2009

  42. Krause L, Herbst-Irmer R, Sheldrick GM, Stalke D (2015) J Appl Crystallogr 41:96–103

    Google Scholar 

  43. Sheldrick G (2015) Crystal structure refinement with SHELXL. Acta Cryst C 71:3–8

    Article  Google Scholar 

  44. Kohler H, Kolbe A, Lux GZ (1977) Z Anorg Allg Chem 428:103–112

    Article  Google Scholar 

  45. Casanova D, Alemany P, Bofill JM, Alvarez S (2003) Chem Eur J 9:1281–1295

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We thank the Natural Science Foundation of Shandong Province (ZR2016BB07) and National Natural Science Foundation of China (21901097) for financial support. Thanks for the Foundation of Introduction and Cultivation Program for Young Innovative Talents in Shandong Provincial Colleges and Universities (Innovation Team of Functional Organometallic Materials Presided by Prof. Yanlan Wang).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Shao-Liang Zhang, Yan-Lan Wang or Shan-Shan Li.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhang, SL., Shen, BW., Song, XD. et al. Ni-Na Coordination Polymer Bridged by Dicyanamide: Synthesis, Structures, Spectra and Thermal Stability. J Chem Crystallogr 53, 138–144 (2023). https://doi.org/10.1007/s10870-022-00952-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10870-022-00952-2

Keywords

Navigation