Skip to main content
Log in

2D Honeycomb Coordination Polymers from 2,2′-Dithiobis(pyridine N-oxide) and Bismuth(III) Halides

  • Original Paper
  • Published:
Journal of Chemical Crystallography Aims and scope Submit manuscript

Abstract

Two bismuth(III) coordination polymers, namely [Bi2X6(µ-dtpo)3]n [X = Cl (1), Br (2); dtpo = 2,2′-dithiobis(pyridine N-oxide)], were prepared using a crystal engineering strategy and structurally characterized by X-ray crystallography. In the isostructural compounds 1 and 2 (trigonal system, space group P-3c1), fac-configured BiX3 units as nodes are joined by the C2-symmetrical dtpo bridging ligand as spacers to generate 2D honeycomb layers with (6,3) topology. The 2D sheets stack along the [001] direction, resulting in virtually hexagonal channels parallel to this direction, which are occupied by disordered methanol and water molecules. The potential solvent area per unit cell volume is 42.2% for 1 and 44.0% for 2.

Graphical Abstract

Two isostructural 2D honeycomb bismuth(III) coordination, synthesized from 2,2′-dithiobis(pyridine N-oxide) and bismuth(III) halides are described.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1
Fig. 1
Fig. 2

Similar content being viewed by others

Data Availability

Supplementary crystallographic data including reflection files have been deposited with the Cambridge Crystallographic Data Centre.

Code Availability

Not applicable.

References

  1. Batten SR, Champness NR (2017) Coordination polymers and metal–organic frameworks: materials by design. Philos Trans R Soc A 375(2084):20160032. https://doi.org/10.1098/rsta.2016.0032

    Article  CAS  Google Scholar 

  2. Li H, Wang K, Sun Y, Lollar CT, Li J, Zhou H-C (2018) Recent advances in gas storage and separation using metal–organic frameworks. Mater Today 21(2):108–121. https://doi.org/10.1016/j.mattod.2017.07.006

    Article  CAS  Google Scholar 

  3. Qian Q, Asinger PA, Lee MJ, Han G, Mizrahi Rodriguez K, Lin S, Benedetti FM, Wu AX, Chi WS, Smith ZP (2020) MOF-based membranes for gas separations. Chem Rev 120(16):8161–8266. https://doi.org/10.1021/acs.chemrev.0c00119

    Article  CAS  PubMed  Google Scholar 

  4. Wanigarathna DKJA, Gao J, Liu B (2020) Metal organic frameworks for adsorption-based separation of fluorocompounds: a review. Mater Adv 1(3):310–320. https://doi.org/10.1039/D0MA00083C

    Article  CAS  Google Scholar 

  5. Mandal TN, Karmakar A, Sharma S, Ghosh SK (2018) Metal–organic frameworks (MOFs) as functional supramolecular architectures for anion recognition and sensing. Chem Rec 18(2):154–164. https://doi.org/10.1002/tcr.201700033

    Article  CAS  PubMed  Google Scholar 

  6. Li H-Y, Zhao S-N, Zang S-Q, Li J (2020) Functional metal–organic frameworks as effective sensors of gases and volatile compounds. Chem Soc Rev 49(17):6364–6401. https://doi.org/10.1039/C9CS00778D

    Article  CAS  PubMed  Google Scholar 

  7. Zhao K, Zhu W, Liu S, Wei X, Ye G, Su Y, He Z (2020) Two-dimensional metal–organic frameworks and their derivatives for electrochemical energy storage and electrocatalysis. Nanoscale Adv 2(2):536–562. https://doi.org/10.1039/C9NA00719A

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Pascanu V, González Miera G, Inge AK, Martín-Matute B (2019) Metal–organic frameworks as catalysts for organic synthesis: a critical perspective. J Am Chem Soc 141(18):7223–7234. https://doi.org/10.1021/jacs.9b00733

    Article  CAS  PubMed  Google Scholar 

  9. Medishetty R, Zaręba JK, Mayer D, Samoć M, Fischer RA (2017) Nonlinear optical properties, upconversion and lasing in metal–organic frameworks. Chem Soc Rev 46(16):4976–5004. https://doi.org/10.1039/C7CS00162B

    Article  CAS  PubMed  Google Scholar 

  10. Mingabudinova LR, Vinogradov VV, Milichko VA, Hey-Hawkins E, Vinogradov AV (2016) Metal–organic frameworks as competitive materials for non-linear optics. Chem Soc Rev 45(19):5408–5431. https://doi.org/10.1039/C6CS00395H

    Article  CAS  PubMed  Google Scholar 

  11. Lawson HD, Walton SP, Chan C (2021) Metal–organic frameworks for drug delivery: a design perspective. ACS Appl Mater Interfaces 13(6):7004–7020. https://doi.org/10.1021/acsami.1c01089

    Article  CAS  PubMed  Google Scholar 

  12. Sun Y, Zheng L, Yang Y, Qian X, Fu T, Li X, Yang Z, Yan H, Cui C, Tan W (2020) Metal–organic framework nanocarriers for drug delivery in biomedical applications. Nano-Micro Lett 12(1):103. https://doi.org/10.1007/s40820-020-00423-3

    Article  CAS  Google Scholar 

  13. Robson R (2000) A net-based approach to coordination polymers. J Chem Soc Dalton Trans 21:3735–3744. https://doi.org/10.1039/B003591M

    Article  Google Scholar 

  14. Moulton B, Zaworotko MJ (2001) From molecules to crystal engineering: supramolecular isomerism and polymorphism in network solids. Chem Rev 101(6):1629–1658. https://doi.org/10.1021/cr9900432

    Article  CAS  PubMed  Google Scholar 

  15. Song X, Wei Y-X, Lai K-M, He Z-D, Zhang H-J (2018) In vivo antifungal activity of dipyrithione against Trichophyton rubrum on guinea pig dermatophytosis models. Biomed Pharmacother 108:558–564. https://doi.org/10.1016/j.biopha.2018.09.045

    Article  CAS  PubMed  Google Scholar 

  16. Nicholas GM, Blunt JW, Munro MHG (2001) Cortamidine oxide, a novel disulfide metabolite from the New Zealand basidiomycete (mushroom) Cortinarius species. J Nat Prod 64(3):341–344. https://doi.org/10.1021/np000408+

    Article  CAS  PubMed  Google Scholar 

  17. Elkington BG, Sydara K, Newsome A, Hwang CH, Lankin DC, Simmler C, Napolitano JG, Ree R, Graham JG, Gyllenhaal C, Bouamanivong S, Souliya O, Pauli GF, Franzblau SG, Soejarto DD (2014) New finding of an anti-TB compound in the genus Marsypopetalum (Annonaceae) from a traditional herbal remedy of Laos. J Ethnopharmacol 151(2):903–911. https://doi.org/10.1016/j.jep.2013.11.057

    Article  PubMed  Google Scholar 

  18. Ravindran Durai Nayagam B, Jebas SR, Devadasan JJ, Murugesan R, Schollmeyer D (2010) catena-Poly[[aquasodium(I)]-μ-[2,2′-(disulfanediyl)bis(pyridine N-oxide)]-μ-(pyridine-2-thiolato 1-oxide)]. Acta Crystallogr Sect E 66(2):m142–m143. https://doi.org/10.1107/S1600536810000073

    Article  CAS  Google Scholar 

  19. Seidel RW, Schulze AC, Oppel IM (2017) 1D coordination polymers from zinc(II) and cadmium(II) halides and 2,2′-dithiobis(pyridine N-oxide): isostructurality and structural diversity. Z Anorg Allg Chem 643(4):317–324. https://doi.org/10.1002/zaac.201600417

    Article  CAS  Google Scholar 

  20. Seidel RW, Oppel IM (2018) Crystal structure of catena-poly[[diiodidomercury(II)]-μ-2,2′-dithiobis(pyridine N-oxide)-κ2O:O’]. Acta Crystallogr Sect E 74(4):433–435. https://doi.org/10.1107/S2056989018003055

    Article  CAS  Google Scholar 

  21. Seidel RW, Oppel IM (2021) Cleavage of 2,2′-dithiobis(pyridine N-oxide) in the presence of group 12 metal ions: crystal structures of [Hg2X2(pyrithionate)2] (X = Br, I) and redetermination of [Zn2(pyrithionate)4]. Crystallogr Rep 66(6):1000–1005. https://doi.org/10.1134/S1063774521060316

    Article  CAS  Google Scholar 

  22. Zhang Y, Tang N, Gu Z, Liu S, Tan M, Sakata K, Sakamoto M (2000) Synthesis, characterization and antitumor activity of complexes of lanthanide nitrates with bis(2-pyridyl-N-oxide) disulfide. Synth React Inorg Met Org Chem 30(10):1995–2008. https://doi.org/10.1080/00945710009351884

    Article  CAS  Google Scholar 

  23. Long D-L, Blake AJ, Champness NR, Schröder M (2000) Lanthanide co-ordination frameworks of 4,4′-bipyridine-N,N′-dioxide. Chem Commun 15:1369–1370. https://doi.org/10.1039/B002363I

    Article  Google Scholar 

  24. Morsali A, Hashemi L (2017) Bismuth(III) coordination polymers. Main group metal coordination polymers. Wiley, Hoboken, pp 153–181. https://doi.org/10.1002/9781119370772.ch8

    Chapter  Google Scholar 

  25. Toma O, Allain M, Meinardi F, Forni A, Botta C, Mercier N (2016) Bismuth-based coordination polymers with efficient aggregation-induced phosphorescence and reversible mechanochromic luminescence. Angew Chem Int Ed 55(28):7998–8002. https://doi.org/10.1002/anie.201602602

    Article  CAS  Google Scholar 

  26. Marandi F, Pantenburg I, Meyer G (2013) A new 3D coordination polymer of bismuth with nicotinic acid N-oxide. J Chem 2013:845810. https://doi.org/10.1155/2013/845810

    Article  CAS  Google Scholar 

  27. CrysAlisPro, Rigaku Oxford Diffraction, version 1.171.41.123a. Yarnton, Oxfordshire, England (2022)

  28. Sheldrick GM (2008) A short history of SHELX. Acta Crystallogr A 64(1):112–122. https://doi.org/10.1107/S0108767307043930

    Article  CAS  PubMed  Google Scholar 

  29. Sheldrick GM (2015) Crystal structure refinement with SHELXL. Acta Crystallogr C Struct Chem 71(Pt 1):3–8. https://doi.org/10.1107/S2053229614024218

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Spek A (2015) PLATON SQUEEZE: a tool for the calculation of the disordered solvent contribution to the calculated structure factors. Acta Crystallogr C 71(1):9–18. https://doi.org/10.1107/S2053229614024929

    Article  CAS  Google Scholar 

  31. Macrae CF, Sovago I, Cottrell SJ, Galek PTA, McCabe P, Pidcock E, Platings M, Shields GP, Stevens JS, Towler M, Wood PA (2020) Mercury 4.0: from visualization to analysis, design and prediction. J Appl Crystallogr 53(Pt 1):226–235. https://doi.org/10.1107/S1600576719014092

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Brandenburg K (2018) DIAMOND, 3.2k3. Crystal Impact GbR, Bonn

    Google Scholar 

  33. Sakamoto R, Takada K, Pal T, Maeda H, Kambe T, Nishihara H (2017) Coordination nanosheets (CONASHs): strategies, structures and functions. Chem Commun 53(43):5781–5801. https://doi.org/10.1039/C7CC00810D

    Article  CAS  Google Scholar 

  34. Tran M, Kline K, Qin Y, Shen Y, Green MD, Tongay S (2019) 2D coordination polymers: design guidelines and materials perspective. Appl Phys Rev 6(4):041311. https://doi.org/10.1063/1.5110895

    Article  CAS  Google Scholar 

  35. Wells AF (1977) Three-dimensional nets and polyhedra. Wiley-Interscience, New York

    Google Scholar 

  36. Jones PG, Henschel D, Weitze A, Blaschette A (1994) Kristall- und Molekülstruktur von fac-Trichloro-tris(dimethylsulfoxid)bismut(III) BiCl3(DMSO)3. Z Anorg Allg Chem 620(6):1037–1040. https://doi.org/10.1002/zaac.19946200615

    Article  CAS  Google Scholar 

  37. Bowmaker GA, Harrowfield JM, Junk PC, Skelton BW, White AH (1998) Syntheses, structures and vibrational spectra of some dimethyl sulfoxide solvates of bismuth(III) bromide and iodide. Aust J Chem 51(4):285–292. https://doi.org/10.1071/C97035

    Article  CAS  Google Scholar 

  38. Eveland JR, Whitmire KH (1996) Complexes of bismuth(III) chloride with oxygen donor ligands. Structural characterization of BiCl3·3THF, BiCl3·diglyme and BiCl3·diethylcarbitol. Inorg Chim Acta 249(1):41–46. https://doi.org/10.1016/0020-1693(96)05024-4

    Article  CAS  Google Scholar 

  39. Carmalt CJ, Clegg W, Elsegood MRJ, Errington RJ, Havelock J, Lightfoot P, Norman NC, Scott AJ (1996) Tetrahydrofuran adducts of bismuth trichloride and bismuth tribromide. Inorg Chem 35(12):3709–3712. https://doi.org/10.1021/ic951635f

    Article  CAS  Google Scholar 

  40. Bodige SG, Rogers RD, Blackstock SC (1997) Supramolecular networks via pyridine N-oxide CH···O hydrogen bonding in the crystal structures of 2,2′-dithiobis(pyridine N-oxide) and its complexes with 1,2,4,5-tetracyanobenzene and pyromellitic dianhydride. Chem Commun 17:1669–1670. https://doi.org/10.1039/A702199B

    Article  Google Scholar 

  41. Rozsondai B (1993) In: Patai S, Rappoport Z (eds) The chemistry of sulphur-containing functional groups. Wiley, New York

  42. Barbour LJ (2006) Crystal porosity and the burden of proof. Chem Commun 11:1163–1168. https://doi.org/10.1039/B515612M

    Article  Google Scholar 

Download references

Acknowledgements

We are grateful to the late Professor William S. Sheldrick for his support of this research.

Funding

This research was funded by Bayer MaterialScience (now Covestro).

Author information

Authors and Affiliations

Authors

Contributions

Conceptualization, RWS and IMO; methodology, RWS; validation, RWS; formal analysis, RWS; investigation, RWS; resources, IMO; data curation, RWS; writing—original draft preparation, RWS; writing—review and editing, RWS and IMO; visualization, RWS; supervision, IMO; project administration, IMO; funding acquisition, IMO.

Corresponding author

Correspondence to Rüdiger W. Seidel.

Ethics declarations

Conflict of interest

The authors declare no conflict of interest.

Ethical Approval

Not applicable.

Consent to Participate

Not applicable.

Consent for Publication

All authors have seen the manuscript and agree to its publication.

Additional information

Dedicated to Dr Richard Goddard on the occasion of this 70th birthday.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 5895 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Seidel, R.W., Oppel, I.M. 2D Honeycomb Coordination Polymers from 2,2′-Dithiobis(pyridine N-oxide) and Bismuth(III) Halides. J Chem Crystallogr 53, 105–111 (2023). https://doi.org/10.1007/s10870-022-00949-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10870-022-00949-x

Keywords

Navigation