Skip to main content

Advertisement

Log in

Hydrolysis of 2,4,6-tris(2-pyrimidyl)-1,3,5-triazine with Pd(II) and Pt(II) Complexes

  • Original Paper
  • Published:
Journal of Chemical Crystallography Aims and scope Submit manuscript

Abstract

In this paper, we report the crystal and molecular structure of two compounds obtained from the reactions between the ligand 2,4,6-tris(2-pyrimidyl)-1,3,5-triazine (TpymT) with Pd(II) and Pt(II) [M(Cl2(CH3CN)2] complexes. The ligand hydrolyses into the anion N-[(pyrimidine)carbonyl]pyrimidine-2-carboxamidato (bpcam), giving compounds with the formula [Pd(bpcam)Cl]·H2O, 1, and [Pt(bpcam)Cl]·DMSO, 2. Compounds 1 and 2 crystallize in the monoclinic crystal system with C2/c and P21/n space groups. The compounds are square planar, with the bpcam acting as a tridentate-κ3N anionic ligand and the Cl anion in the fourth position. In both complexes, the molecules stack in columns presenting interactions between the aromatic rings, reinforced in 2 by Pt···Pt interactions. The complexes interact with the solvent molecules through H-bonds building a 3D structure. We analyzed the systems through geometric parameters and Hirshfeld surface studies. The energy frameworks indicate that the main interactions between molecules in the crystal are dispersion forces.

Graphical Abstract

The paper presents the X-ray structures of [M(bpcam)Cl]·where bdcam- is the anion N-[(pyrimidine)carbonyl]pyrimidine-2-carboxamidato and M = Pd(II) and Pt(II), as well as Hirshfeld Surface and Energy Framework studies.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1
Scheme 2
Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Scheme 3

Similar content being viewed by others

Data Availability

CCDC 2072637 and 2072639 contains the supplementary crystallographic data for this paper. The data can be obtained free of charge from The Cambridge Crystallographic Data Centre via www.ccdc.cam.ac.uk/structures.

References

  1. Therrien B (2011) J Organomet Chem 696:637–651

    Article  CAS  Google Scholar 

  2. Safin DA, Frost JM, Murugesu M (2015) Dalton Trans 44:20287–20294

    Article  CAS  PubMed  Google Scholar 

  3. Safin DA, Tumanov NA, Leitch AA, Brusso JL, Filinchuk Y, Murugesu M (2015) Cryst Eng Comm 17:2190–2195

    Article  CAS  Google Scholar 

  4. Lerner EI, Lippard SJ (1976) J Am Chem Soc 98:5397–5398

    Article  CAS  Google Scholar 

  5. Lerner EI, Lippard SJ (1977) Inorg Chem 16:1537–1546

    Article  CAS  Google Scholar 

  6. Lerner EI, Lippard SJ (1977) Inorg Chem 16:1546–1551

    Article  CAS  Google Scholar 

  7. Rabelo R, Valdo AK, Robertson C, Thomas JA, Stumpf HO, Martins FT, Pedroso EF, Julve M, Lloret F, Cangussu D (2017) New J Chem 41:6911–6921

    Article  CAS  Google Scholar 

  8. Safin DA, Pialat A, Korobkov I, Murugesu M (2015) Chem Eur J 21:6144–6149

    Article  CAS  PubMed  Google Scholar 

  9. Safin DA, Pialat A, Leitch AA, Tumanov NA, Korobkov I, Filinchuk Y, Brusso JL, Murugesu M (2015) Chem Commun 51:9547–9550

    Article  CAS  Google Scholar 

  10. Frost JM, Kobera L, Pialat A, Zhang Y, Southern SA, Gabidullin B, Bryce DL, Murugesu M (2016) Chem Commun 52:10680–10683

    Article  CAS  Google Scholar 

  11. Safin DA, Holmberg RJ, Burgess KMN, Robeyns K, Bryce DL, Murugesu M (2015) Eur J Inorg Chem 2015:441–446

    Article  CAS  Google Scholar 

  12. Garcia AM, Bassani DM, Lehn J-M, Baum G, Fenske D (1999) Chem Eur J 5:1234–1238

    Article  CAS  Google Scholar 

  13. Shiga T, Miyamoto H, Newton GN, Oshio H (2018) Dalton Trans 47:13402–13407

    Article  CAS  PubMed  Google Scholar 

  14. Marzo T, Cirri D, Ciofi L, Gabbiani C, Feis A, Di Pasquale N, Stefanini M, Biver T, Messori L (2018) J Inorg Biochem 183:101–106

    Article  CAS  PubMed  Google Scholar 

  15. Sheldrick GM (2015) Acta Crystallogr Sect A Found Crystallogr 71:3–8

    Article  Google Scholar 

  16. Sheldrick GM (2015) Acta Crystallogr Sect C Struct Chem 71:3–8

    Article  Google Scholar 

  17. Spek AL (2003) J Appl Crystallogr 36:7–13

    Article  CAS  Google Scholar 

  18. Macrae CF, Sovago I, Cottrell SJ, Galek PTA, McCabe P, Pidcock E, Platings M, Shields GP, Stevens JS, Towler M, Wood PA (2020) J Appl Crystallogr 53:226–235

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Barbour LJ (2020) J Appl Crystallogr 53:1141–1146

    Article  CAS  Google Scholar 

  20. Spackman MA, Jayatilaka D (2009) CrystEngComm 11:19–32

    Article  CAS  Google Scholar 

  21. Mackenzie CF, Spackman PR, Jayatilaka D, Spackman MA (2017) IUCrJ 4:575–587

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Turner MJ, Thomas SP, Shi MW, Jayatilaka D, Spackman MA (2015) Chem Commun 51:3735–3738

    Article  CAS  Google Scholar 

  23. Spackman MA, McKinnon JJ (2002) CrystEngComm 4:378–392

    Article  CAS  Google Scholar 

  24. CaseF H, Koft E (1959) J Am Chem Soc 81:905–906

    Article  Google Scholar 

  25. Cantarero, A, Amigó JM, Faus J, Julve M, Debaerdemaeker T (1988) J Chem Soc, Dalton Trans. https://doi.org/10.1039/DT9880002033

  26. Faus J, Julve M, Debaerdemaeker T (1989) J Chem Soc, Dalton Trans. https://doi.org/10.1039/DT9890001681

  27. Castro I, Faus J, Julve M, Debaerdemaeker T (1990) J Chem Soc, Dalton Trans 1990:891. https://doi.org/10.1039/DT9900000891

  28. Simões,TRG, Mambrini, RV, Reis, DO, Marinho, MV, Ribeiro, MA, Pinheiro, CB, Ferrando-Soria J, Déniz M, Ruiz-Pérez C, Cangussu D, Stumpf HO, Lloret F, Julve M (2013) Dalton Transactions 42:5778–5795. https://doi.org/10.1039/c3dt32949f

  29. Hadadzadeh H, Maghami M, Simpson J, Khalaji AD, Abdi K (2012) Chem Crystallogr 42:656–667. https://doi.org/10.1007/s10870-012-0296-7

  30. Glaser T, Lügger T, Fröhlich R (2004) Eur J Inorg Chem 2:394–400. https://doi.org/10.1002/ejic.200300443

  31. Marcos D, Martínez-Mañez R, Folgado JV, Beltran-Porter AD, Fuertes A (1989) Inorg Chim Acta 159:11–18. https://doi.org/10.1016/S0020-1693(00)80889-0

Download references

Acknowledgements

LEC-E acknowledges CONACYT for the scholarship received. We thank Elizabeth Huerta Salazar, Ma. Del Carmen García Gonzalez, Francisco Javier Pérez Flores, and Rocío Patiño Maya for technical support.

Funding

This study was supported by Consejo Nacional de Ciencia y Tecnología.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jesús Valdés-Martínez.

Ethics declarations

Conflict of Interest

The authors declare that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 1450 KB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Cruz-Estrada, L.E., Hernández-Ortega, S. & Valdés-Martínez, J. Hydrolysis of 2,4,6-tris(2-pyrimidyl)-1,3,5-triazine with Pd(II) and Pt(II) Complexes. J Chem Crystallogr 53, 127–137 (2023). https://doi.org/10.1007/s10870-022-00948-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10870-022-00948-y

Keywords

Navigation