Skip to main content
Log in

Case of Charge-Assisted Hydrogen Bonding in the Crystal Structure of Sodium Laurate, Lauric Acid

  • Original Paper
  • Published:
Journal of Chemical Crystallography Aims and scope Submit manuscript

Abstract

Crystals of Sodium Laurate, Lauric Acid (NaLLA) were obtained and the structure was determined by single-crystal X-ray diffraction. The new crystal form is monoclinic of space group P21/c. The asymmetric unit contains two independent laurate molecules whose carboxylic/carboxylate groups are linked by a low barrier O-H…O hydrogen bond. Two lauric/laurate molecules are in a head-to-head configuration and the elongated hydrophobic chains are parallel to the long b axis. The carboxylic hydrogen atom was found to be disordered, bound on each of the two carboxylate groups in an unsymmetrical way. The non-symmetrical character of the hydrogen bond is related to the presence of two independent fatty acid molecules in the asymmetric unit and is in accordance with the different lengths of the four C-O bonds present in the molecular structure. The crystal structure was analyzed in terms of interactions on the Hirshfeld surface. The packing is stabilized by hydrogen bonds and O…Na ionic interactions in the hydrophilic layer and by C-H…H-C contacts in the hydrophobic layers which are the most enriched major contacts.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

Data Availability

The CIF file and hkl reflections dataset generated and analysed during the current study are available at the Cambridge Structural Database repository (Deposition Number 2,143,409), [https://www.ccdc.cam.ac.uk/]

References

  1. Metz J, Lassnre M (1996) Ann N Y Acad Sci 792:82–90

    Article  CAS  Google Scholar 

  2. Afig MA, Rahman RA, Man YC, Al-Kahtani HA, Mansor TST (2013) Int. Food Res. J., 20:2035

  3. German BJ (2008) Sci Aliments 28:176–186

    Article  CAS  Google Scholar 

  4. Kavitha G, Vijayarohini P, Swamidoss CMA (2020) Mater Today-Proc., 33:2782–2791

  5. Dayrit Fabian M (2015) J Am Oil Chem Soc 92:1–15

    Article  Google Scholar 

  6. Li YL, Wang S, Zhang X, Chen YM, Ning JN, Liu GF, Zhang GQ (2011) Mater Sci Forum 675:227–230

    Article  Google Scholar 

  7. Godquin-Giroud AM, Marchon JC, Guillon D, Skoulios A (1984) J Phys Lett 45:681–684

    Article  CAS  Google Scholar 

  8. Matveeva AG, Yurtov EV, Prokopova LA (2012) Theor Found Chem Eng 46:395–400

    Article  CAS  Google Scholar 

  9. Piper SH, Malkin T, Austin HE (1926) J Chem Soc 129:2310–2318

    Article  Google Scholar 

  10. Thiband J, Dupré LTF (1930) C R Acad Sci Paris 191:200

    Google Scholar 

  11. Gbabode G, Negrier P, Mondieig D, Moreno Calvo E, Calvet T, Cuevas-Diarte M, À (2007) Chem Eur J 11:3150–3159

    Article  Google Scholar 

  12. Moreno E, Cordobilla R, Calvet T, Cuevas-Diarte MA, Gbabode G, Negrier P, Oonk HA (2007) New J Chem 31:947–957

    Article  CAS  Google Scholar 

  13. Gbabode G, Negrier P, Mondieig D, Moreno E, Calvet T, Cuevas-Diarte M (2009) J Alloys Compd 469:539–551

    Article  CAS  Google Scholar 

  14. Bernstein J, Davis RE, Shimoni L, Chang NL (1995) Angew Chem Int Ed 34:1555–1573

    Article  CAS  Google Scholar 

  15. Goto M, Asada E (1978) Bull Chem Soc Jap 51:70–74

    Article  CAS  Google Scholar 

  16. Morley WM, Vand V (1949) Nature 163:285–285

    Article  CAS  PubMed  Google Scholar 

  17. Vand V, Aitken A, Campbell RK (1949) Acta Crystallogr 2:398–403

  18. Vand V, Morley WM, Lomer TR (1951) Acta Crystallogr 4:324–329

    Article  CAS  Google Scholar 

  19. Lomer TR (1955) Nature 176:653–654

    Article  CAS  Google Scholar 

  20. Lomer TR, Spanswick RM (1961) Acta Crystallogr 14:312–313

    Article  CAS  Google Scholar 

  21. Lomer TR (1963) Acta Crystallogr 16:984–988

    Article  CAS  Google Scholar 

  22. Groom CR, Bruno IJ, Lightfoot MP, Ward SC (2016) Acta Crystallogr B: Struct Sci Cryst Eng 72:171–179

    Article  CAS  Google Scholar 

  23. Von Sydow E (1956) Arkiv Kemi 9:231

  24. Moreno–Calvo E, Gbabode G, Cordobilla R, Calvet T, Cuevas–Diarte MA, Negrier P, Mondieig D (2009) Chem Eur J 15:13141–13149

    Article  PubMed  Google Scholar 

  25. Martínez-Casado FJ, Ramos-Riesco M, Rodríguez-Cheda JA, Redondo-Yélamos MI, Garrido L, Fernández-Martínez A, Poulain A (2017) Phys Chem Chem Phys 19:17009–17018

    Article  PubMed  Google Scholar 

  26. Gražulis S, Chateigner D, Downs RT, Yokochi AF, T, Quirós M, Lutterotti L, Le Bail A (2009) J Appl Crystallogr 42:726–729

    Article  PubMed  PubMed Central  Google Scholar 

  27. Rigaku Oxford Diffraction. (2019) CrysAlis PRO Software System, version 1.171.40.67a; Rigaku Corporation: Oxford, UK

  28. Sheldrick GM (2015) Acta Crystallogr A 71:3–8

  29. Sheldrick GM (2015) Acta Crystallogr C Struct chem 71:3–8

    Article  PubMed  PubMed Central  Google Scholar 

  30. Jelsch C, Guillot B, Lagoutte A, Lecomte C, (2005) J Appl Crystallogr 38:38–54

  31. Domagała S, Fournier B, Liebschner D, Guillot B, Jelsch C (2012) Acta Crystallogr 68:337–351

    Article  Google Scholar 

  32. Gilli P, Bertolasi V, Ferretti V (1993) J Am Chem Soc 116:909–915

    Article  Google Scholar 

  33. Grabowski SJ (2021) Crystals 11:5

  34. Madsen GKH, Iversen BB, Larsen FK, Kapon M, Reisner GM, Herbstein FH (1998) J Am Chem Soc 120:10040–10045

    Article  CAS  Google Scholar 

  35. Ursby T, Bourgeois D (1997) Acta Crystallogr A53:564–575

    Article  CAS  Google Scholar 

  36. Schiøtt B, Iversen BB, Madsen GKH, Larsen FK, Bruice TC (1998) Proc. Natl. Acad. Sci. 95:12799–12802.

  37. D’ascenzo L, Auffinger P (2015) Acta Crystallogr B 71:164–175

    Article  Google Scholar 

  38. Agnimonhan FH, Bendeif EE, Akanni LA, Gbaguidi AF, Martin E, Wenger E, Lecomte C (2020) Acta Crystallogr E: Crystallogr Commun 76:581–584

    Article  CAS  PubMed  Google Scholar 

  39. Leban I, Golič L, Speakman JC (1973) J Chem Soc Perkin Trans 2:703–705

    Article  Google Scholar 

  40. Kojić-Prodić B, Molčanov K (2008) Acta Chim Slov 55:692–708

    Google Scholar 

  41. Desiraju GR (1989) J Am Chem Soc 111:8725–8726

    Article  CAS  Google Scholar 

  42. Zhang B, Xie CZ, Wang XQ, Shen GQ, Shen DZ (2004) Acta Crystallogr Sect E: Struct Rep Online 60:m1293–m1295

    Article  CAS  Google Scholar 

  43. Ying-Qun Y, Shao-Hua Z, Si-Ping T, Li-Xia F (2013) Chin J Struct Chem 32:63–66

    Google Scholar 

  44. Guillot B, Enrique E, Huder L, Jelsch C (2014) MS19. 001. Acta Crystallogr 70:C279

    Google Scholar 

  45. Wolff SK, Grimwood DJ, McKinnon JJ, Turner MJ, Jayatilaka D, Spackman MA (2012) Crystal Explorer 17.5., Université de Western Australia

  46. Jelsch C, Ejsmont K, Huder L (2014) IUCr J 1:119–128

    Article  CAS  Google Scholar 

  47. Gilli G, Gilli P (2000) J Mol Struct 552:1–15

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The PMD2 X-ray diffraction facility (http://crm2.univ-lorraine.fr/lab/fr/services/pmd2x) of the Institut Jean Barriol, Université de Lorraine is acknowledged for the X-ray diffraction measurements, data processing and analysis, and for providing reports for publication.

I.G. thanks the Government of Senegal for scholarships and the support of Nancy ROTARY Club.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Christian Jelsch.

Ethics declarations

Conflicts of interest/Competing interests :

None.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Goudiaby, I., Guillot, B., Wenger, E. et al. Case of Charge-Assisted Hydrogen Bonding in the Crystal Structure of Sodium Laurate, Lauric Acid. J Chem Crystallogr 53, 93–104 (2023). https://doi.org/10.1007/s10870-022-00946-0

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10870-022-00946-0

Keywords

Navigation