Skip to main content
Log in

Synthesis, Crystal Structures and Hirshfeld Surface Analysis of Bis­[(di(2-methoxyphenyl)phosphoroselenoyl)-2,4-cyclopentadien-1-yl]iron(II) and Ruthenium(II)η6-arene Complex of Bis-[(di(2-allylphenyl)phosphonite)-2,4-cyclopentadien-1-yl]iron(II)

  • Original Paper
  • Published:
Journal of Chemical Crystallography Aims and scope Submit manuscript

Abstract

Ferrocenylbis(phosphonites), [Fe(C5H4P(OR)2)2 (2, R = -C6H4(OMe-o); 3, R = -C6H4(C3H5-o))] were synthesized by the reaction of Fe(C5H4PCl2)2 (1) with 2-methoxyphenol and 2-allylphenol. The reaction of 2 with elemental selenium afforded bisselenide, [Fe{C5H4P(Se)(OC6H4(OMe-o))2}2] (4). Equimolar reaction between 3 and [RuCl2(η6-p-cymene)]2 yielded [{Ru2Cl4(η6-p-cymene)2}Fe{C5H4P(OC6H4(C3H5-o))2}2] (5) in good yield. Bisselenide (4) and ruthenium(II) complex (5) were characterized by single-crystal X-ray analysis. In compound 4, the geometry around phosphorus atoms is distorted tetrahedral. In case of complex 5, ruthenium atoms containing η6-p-cymene, two chlorides and one phosphine moiety display a typical three-legged "piano-stool" structure. The molecule has crystallographically imposed centrosymmetry. A Hirshfeld surface analysis indicates that the most significant contributions to the crystal packing of compound 4 are from H⋅⋅⋅H (50.1%), C⋅⋅⋅H/H⋅⋅⋅C (24.1%), Se⋅⋅⋅H/H⋅⋅⋅Se (13.4%), O⋅⋅⋅H/H⋅⋅⋅O (10.8%) contacts, and in the case of complex 5 are from H⋅⋅⋅H (73.3%), C⋅⋅⋅H/H⋅⋅⋅C (15.8%), Cl⋅⋅⋅H/H⋅⋅⋅Cl (10%) contacts.

Graphical Abstract

This paper describes crystal structures of bisselenide and a ruthenium(II) complex [Fe{C5H4P(Se)(OC6H4(OMe-o))2}2 and [{RuCl2(η6-p-cymene)}2Fe{C5H4P(OC6H4(C3H5-o))2}2].

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1
Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

Data Availability

Data sharing not applicable to this article as no datasets were generated or analysed during the current study.

References

  1. Colacot TJ, Shea HA (2004) Cp2Fe(PR2)2PdCl2 (R = i-Pr, t-Bu) complexes as air-stable catalysts for challenging Suzuki coupling reactions. Org Lett 6(21):3731–3734

    Article  CAS  Google Scholar 

  2. Vosáhlo P, Schulz J, Škoch K, Císařová I, Štěpnička P (2019) Synthesis and characterisation of palladium(ii) complexes with hybrid phosphinoferrocene ligands bearing additional O-donor substituents. New J Chem 43(11):4463–4470

    Article  Google Scholar 

  3. Štěpnička P, Zábranský M, Císařová I (2012) An alternative preparation of 1-(N, N-dimethylaminomethyl)-1′-(diphenylphosphanyl)ferrocene: synthesis and structural characterization of AuI and PdII complexes with this hybrid ligand. ChemistryOpen 1(2):71–79

    Article  Google Scholar 

  4. Punji B, Mague JT, Balakrishna MS (2007) Thioether-functionalized ferrocenyl-bis(phosphonite), Fe{(C5H4)P(−OC10H6(μ-S)C10H6O−)}2: synthesis, coordination behavior, and application in Suzuki-Miyaura cross-coupling reactions. Inorg Chem 46(24):10268–10275

    Article  CAS  Google Scholar 

  5. Fernandes TA, Solařová H, Císařová I, Uhlík F, Štícha M, Štěpnička P (2015) Synthesis of phosphinoferrocene amides and thioamides from carbamoyl chlorides and the structural chemistry of Group 11 metal complexes with these mixed-donor ligands. Dalton Trans 44(7):3092–3108

    Article  CAS  Google Scholar 

  6. Mann G, Shelby Q, Roy AH, Hartwig JF (2003) Electronic and steric effects on the reductive elimination of diaryl ethers from palladium(II). Organometallics 22(13):2775–2789

    Article  CAS  Google Scholar 

  7. Hu H, Ichiryu H, Nakajima K, Ogasawara M (2021) Estimating effective steric and electronic impacts of a ferrocenyl group in organophosphines. ACS Omega 6(8):5981–5989

    Article  CAS  Google Scholar 

  8. Dey S, Pietschnig R (2021) Chemistry of sterically demanding dppf-analogs. Coord Chem Rev 437:213850

    Article  CAS  Google Scholar 

  9. Clark JSK, Voth CN, Ferguson MJ, Stradiotto M (2017) Evaluating 1,1′-bis(phosphino)ferrocene ancillary ligand variants in the nickel-catalyzed C-N cross-coupling of (hetero)aryl chlorides. Organometallics 36(3):679–686

    Article  CAS  Google Scholar 

  10. Fihri A, Meunier P, Hierso J-C (2007) Performances of symmetrical achiral ferrocenylphosphine ligands in palladium-catalyzed cross-coupling reactions: a review of syntheses, catalytic applications and structural properties. Coord Chem Rev 251(15):2017–2055

    Article  CAS  Google Scholar 

  11. Colacot TJ (2003) A concise update on the applications of chiral ferrocenyl phosphines in homogeneous catalysis leading to organic synthesis. Chem Rev 103(8):3101–3118

    Article  CAS  Google Scholar 

  12. Zhao Q, Chen C, Wen J, Dong X-Q, Zhang X (2020) Noncovalent interaction-assisted ferrocenyl phosphine ligands in asymmetric catalysis. Acc Chem Res 53(9):1905–1921

    Article  CAS  Google Scholar 

  13. Rao S, Mague JT, Balakrishna MS (2013) Synthesis, transition metal chemistry and catalytic reactions of ferrocenylbis(phosphonite), [Fe{C5H4P(OC6H3(OMe-o)(C3H5-p))2}2]. Dalton Trans 42(32):11695–11708

    Article  CAS  Google Scholar 

  14. Shum SP, Pastor SD, Rihs G (2002) Ferrocene bis(phosphonite)s: synthesis and characterization of a novel class of sterically congested Ligands. Inorg Chem 41(1):127–131

    Article  CAS  Google Scholar 

  15. Chikkali SH, Bellini R, Berthon-Gelloz G, van der Vlugt JI, de Bruin B, Reek JNH (2010) Highly enantioselective hydroformylation of dihydrofurans catalyzed by hybrid phosphine–phosphonite rhodium complexes. Chem Commun 46(8):1244–1246

    Article  CAS  Google Scholar 

  16. Peng X, Wang Z, Xia C, Ding K (2008) Ferrocene-based bidentate phosphonite ligands for rhodium(I)-catalyzed enantioselective hydroformylation. Tetrahedron Lett 49(33):4862–4864

    Article  CAS  Google Scholar 

  17. Hierso J-C, Lacassin F, Broussier R, Amardeil R, Meunier P (2004) Synthesis and characterisation of a new class of phosphine-phosphonite ferrocenediyl dinuclear rhodium complexes. J Organomet Chem 689(4):766–769

    Article  CAS  Google Scholar 

  18. Sameer Prasad P, Pandey MK, Balakrishna MS (2019) Synthesis and transition metal complexes of 1,1′-bis(diphenylethynylphosphino)ferrocene. Polyhedron 158:173–182

    Article  CAS  Google Scholar 

  19. Prasad PS, Balakrishna MS (2018) Synthesis and transition metal chemistry of ferrocenylbis(benzo-oxazaphosphininone). J Organomet Chem 862:31–39

    Article  CAS  Google Scholar 

  20. Siddiqui MM, Radhakrishna L, Mague JT, Balakrishna MS (2016) 1,1′-Bis(dipyrrolylphosphino)ferrocene: Synthesis, coordination chemistry and structural studies. J Organomet Chem 824:15–24

    Article  CAS  Google Scholar 

  21. Bennett MA, Huang TN, Matheson TW, Smith AK, Ittel S, Nickerson W (1982) 16. (η6-Hexamethylbenzene) ruthenium complexes. Inorg Synth 21:74–78

    CAS  Google Scholar 

  22. Bruker (2008, 2009a) APEX2, version 2008.6-1, 2009.5-1, 2009.9-0, 2009.11-0, 2010.11-3; Bruker-AXS: Madison, WI.

  23. Bruker (2008, 2009a) SAINT+, versions 7.60A and 7.68A; Bruker-AXS: Madison, WI.

  24. Sheldrick GM (2008) CELL_NOW, version 2008/2. University of Göttingen, Göttingen

    Google Scholar 

  25. Sheldrick GM (2008a, 2009) SADABS, version 2008/2 and version 2009/2. University of Göttingen, Göttingen

  26. Sheldrick GM (2008) TWINABS, version 2008/4. University of Göttingen, Göttingen

    Google Scholar 

  27. Sheldrick GM (2008) SHELXS and SHELXL. Acta Cryst A64:112–122

    Article  Google Scholar 

  28. Codding PW, Kerr KA (1979) Triphenylphosphine selenide. Acta Crystallogr B 35(5):1261–1263

    Article  Google Scholar 

  29. Spackman MA, Jayatilaka D (2009) Hirshfeld surface analysis. CrystEngComm 11(1):19–32

    Article  CAS  Google Scholar 

  30. McKinnon JJ, Jayatilaka D, Spackman MA (2007) Towards quantitative analysis of intermolecular interactions with Hirshfeld surfaces. Chem Commun 37:3814–3816

    Article  Google Scholar 

  31. Turner MJ, McKinnon JJ, Wolff SK, Grimwood DJ, Spackman PR, Jayatilaka D, Spackman MA (2017) CrystalExplorer21.5 The University of Western Australia.

Download references

Acknowledgements

MSB thanks the Science & Engineering Research Board, New Delhi, for financial support of this work through grant CRG/2019/000040. We also thank the Department of Chemistry Instrumentation Facilities, IIT Bombay, for spectral and analytical data. DM thanks the Department of Science and Technology, New Delhi, for the Inspire fellowship, HK thanks the IITB for a fellowship. J.T.M. thanks the Louisiana Board of Regents for the purchase of the CCD diffractometer and the Chemistry Department of Tulane University for support of the X-ray laboratory.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Joel T. Mague or Maravanji S. Balakrishna.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mondal, D., Kunchur, H.S., Rao, S. et al. Synthesis, Crystal Structures and Hirshfeld Surface Analysis of Bis­[(di(2-methoxyphenyl)phosphoroselenoyl)-2,4-cyclopentadien-1-yl]iron(II) and Ruthenium(II)η6-arene Complex of Bis-[(di(2-allylphenyl)phosphonite)-2,4-cyclopentadien-1-yl]iron(II). J Chem Crystallogr 52, 359–370 (2022). https://doi.org/10.1007/s10870-022-00933-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10870-022-00933-5

Keywords

Navigation