Skip to main content
Log in

Synthesis of Thiosemicarbazones and Their Organoiodine Cocrystals: Cooperative Effects of Halogen and Hydrogen Bonding

  • Original Paper
  • Published:
Journal of Chemical Crystallography Aims and scope Submit manuscript

Abstract

Utilizing the facile addition–elimination reaction of thiosemicarbazide with acetone or aldehydes, nine thiosemicarbazones were synthesized. Aldehydes were chosen which contain additional heteroatoms to increase the diversity of possible intermolecular interactions. Further, the thiosemicarbazone synthesis was conducted in situ with one of the common halogen bond donors 1,2-, 1,3-, or 1,4-diiodotetrafluorobenzene, 1,3,5-trifluoro-2,4,6-triiodobenzene, or tetraiodoethylene. These reactions resulted in the characterization of 12 new cocrystals showcasing halogen bonding. The dimerization of two thiosemicarbazone units through a pair of N‒H···S hydrogen bonds was a universal feature of the solid-state structures in this series, with the hydrogen bond network often extending these motifs into chains. The organoiodines serve to link chains through either I···S or I···N halogen bonding, or less commonly, S···I chalcogen bonding. This variety of intermolecular interactions leads to the formation of double-stranded chains, ribbons, and sheets.

Graphical Abstract

Utilizing the facile addition–elimination reaction of thiosemicarbazide with acetone or aldehydes, nine thiosemicarbazones were synthesized, seven of which were isolated as cocrystals with common halogen bond donors. Significant N–H···S hydrogen bonding was observed in all, with S···I halogen and chalcogen bonding contributing to the long-range packing in the cocrystals.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1
Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Data Availability

The crystallographic data including CIF and fcf files have been deposited into Cambridge Crystallographic Data Centre. CCDC 2,117,350 through 2,117,363 contain the crystallographic data. These data can be obtained free of charge from the Cambridge Crystallographic Data Centre via www.ccdc.cam.ac.uk/structures.

References

  1. Desiraju GR, Shing Ho P, Kloo L, Legon AC, Marquardt R, Metrangolo P, Politzer P, Resnati G, Rissanen K (2013) Definition of the halogen bond (IUPAC recommendations 2013). Pure Appl Chem 85:1711–1713. https://doi.org/10.1351/PAC-REC-12-05-10

    Article  CAS  Google Scholar 

  2. Parisini E, Metrangolo P, Pilati T, Resnati G, Terraneo G (2011) Halogen bonding in halocarbon-protein complexes: a structural survey. Chem Soc Rev 40:2267–2278. https://doi.org/10.1039/c0cs00177e

    Article  PubMed  CAS  Google Scholar 

  3. Zhou P, Tian F, Zou J, Shang Z (2010) Rediscovery of halogen bonds in protein–ligand complexes. Mini-Reviews Med Chem 10:309–314

    Article  CAS  Google Scholar 

  4. Metrangolo P, Resnati G (2015) Topics in current chemistry: halogen bonding II. Springer, Cham

    Google Scholar 

  5. Metrangolo P, Resnati G (2008) Structure and Bonding: Halogen Bonding. Springer, Cham

    Book  Google Scholar 

  6. Metrangolo P, Resnati G (2015) Topics in current chemistry: halogen bonding I. Springer International Publishing, Cham

    Google Scholar 

  7. Metrangolo P, Resnati G (2012) Halogen bonding: where we are and where we are going. Cryst Growth Des 12:5835–5838. https://doi.org/10.1021/cg301427a

    Article  CAS  Google Scholar 

  8. Cavallo G, Metrangolo P, Milani R, Pilati T, Priimagi A, Resnati G, Terraneo G (2016) The halogen bond. Chem Rev 116:2478–2601. https://doi.org/10.1021/acs.chemrev.5b00484

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  9. Metrangolo P, Neukirch H, Pilati T, Resnati G (2005) Halogen bonding based recognition processes: a world parallel to hydrogen bonding. Acc Chem Res 38:386–395. https://doi.org/10.1021/ar0400995

    Article  PubMed  CAS  Google Scholar 

  10. Legon AC (1998) π-Electron “donor-acceptor” complexes B ··· ClF and the existence of the “chlorine bond.” Chem A Eur J 4:1890–1897. https://doi.org/10.1002/(SICI)1521-3765(19981002)4:10%3c1890::AID-CHEM1890%3e3.0.CO;2-4

    Article  CAS  Google Scholar 

  11. Corradi E, Meille SV, Messina MT, Metrangolo P, Resnati G (2000) Halogen bonding versus hydrogen bonding in driving self-assembly processes. Angew Chem Int Ed 39:1782–1786. https://doi.org/10.1002/(SICI)1521-3773(20000515)39:10%3c1782::AID-ANIE1782%3e3.0.CO;2-5

    Article  CAS  Google Scholar 

  12. Sakunthaladevi R, Jothi L (2021) Growth dynamics and molecular structural analysis of dimethylketothiosemicarbazone single crystals for frequency conversion applications—Optical and thermal characterization. J Mol Struct 1239:130463. https://doi.org/10.1016/j.molstruc.2021.130463

    Article  CAS  Google Scholar 

  13. Pavan FR, da S Maia PI, Leite SRA, Deflon VM, Batista AA, Sato DN, Franzblau SG, Leite CQF (2010) Thiosemicarbazones, semicarbazones, dithiocarbazates and hydrazide/hydrazones: anti-mycobacterium tuberculosis activity and cytotoxicity. Eur J Med Chem 45:1898–1905. https://doi.org/10.1016/j.ejmech.2010.01.028

    Article  PubMed  CAS  Google Scholar 

  14. Agarwal RK, Singh L, Sharma DK (2006) Synthesis, spectral, and biological properties of copper(II) complexes of thiosemicarbazones of Schiff bases derived from 4-aminoantipyrine and aromatic aldehydes. Bioinorg Chem Appl 2006:1–10. https://doi.org/10.1155/BCA/2006/59509

    Article  CAS  Google Scholar 

  15. Richardson DR, Kalinowski DS, Richardson V, Sharpe PC, Lovejoy DB, Islam M, Bernhardt PV (2009) 2-Acetylpyridine thiosemicarbazones are potent iron chelators and antiproliferative agents: Redox activity, iron complexation and characterization of their antitumor activity. J Med Chem 52:1459–1470. https://doi.org/10.1021/jm801585u

    Article  PubMed  CAS  Google Scholar 

  16. Kulandaivelu U, Chawada B, Boyapati S, Reddy AR (2014) Synthesis antimicrobial and anticancer activity of 1-[(arylalkylidene)amino]-3-(4H–1,2,4-triazol-4-yl)thiourea. J Pharm Chem 1:5. https://doi.org/10.14805/jphchem.2014.art4

    Article  Google Scholar 

  17. Mohamed NA, Mohamed RR, Seoudi RS (2014) Synthesis and characterization of some novel antimicrobial thiosemicarbazone O-carboxymethyl chitosan derivatives. Int J Biol Macromol 63:163–169. https://doi.org/10.1016/j.ijbiomac.2013.10.044

    Article  PubMed  CAS  Google Scholar 

  18. Sharma D, Jasinski JP, Smolinski VA, Kaur M, Paul K, Sharma R (2020) Synthesis and structure of complexes (NiII, AgI) of substituted benzaldehyde thiosemicarbazones and antitubercular activity of NiII complex. Inorgan Chim Acta 499:119187. https://doi.org/10.1016/j.ica.2019.119187

    Article  CAS  Google Scholar 

  19. Khan A, Jasinski JP, Smolenski VA, Hotchkiss EP, Kelley PT, Shalit ZA, Kaur M, Paul K, Sharma R (2018) Enhancement in anti-tubercular activity of indole based thiosemicarbazones on complexation with copper(I) and silver(I) halides: structure elucidation, evaluation and molecular modelling. Bioorg Chem 80:303–318. https://doi.org/10.1016/j.bioorg.2018.06.027

    Article  PubMed  CAS  Google Scholar 

  20. Khan A, Paul K, Singh I, Jasinski JP, Smolenski VA, Hotchkiss EP, Kelley PT, Shalit ZA, Kaur M, Banerjee S, Roy P, Sharma R (2020) Copper(i) and silver(i) complexes of anthraldehyde thiosemicarbazone: Synthesis, structure elucidation,: In vitro anti-tuberculosis/cytotoxic activity and interactions with DNA/HSA. Dalton Trans 49:17350–17367. https://doi.org/10.1039/d0dt03104f

    Article  PubMed  CAS  Google Scholar 

  21. Haas KL, Franz KJ (2009) Application of metal coordination chemistry to explore and manipulate cell biology. Chem Rev 109:4921–4960. https://doi.org/10.1021/cr900134a

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  22. Sun RWY, Ma DL, Wong ELM, Che CM (2007) Some uses of transition metal complexes as anti-cancer and anti-HIV agents. Dalton Trans. https://doi.org/10.1039/b705079h

    Article  PubMed  Google Scholar 

  23. Güveli Ş, Cnar SA, Karahan Ö, Aviyente V, Ülküseven B (2016) Nickel(II)–PPh3 complexes of S, N-substituted thiosemicarbazones—structure, DFT study, and catalytic efficiency. Eur J Inorg Chem 2016:538–544. https://doi.org/10.1002/ejic.201501227

    Article  CAS  Google Scholar 

  24. Castiñeiras A, Fernández-Hermida N, García-Santos I, Gómez-Rodríguez L (2012) Neutral NiII, PdII and PtII ONS-pincer complexes of 5-acetylbarbituric-4N-dimethylthiosemicarbazone: synthesis, characterization and properties. J Chem Soc Dalton Trans 41:13486–13495. https://doi.org/10.1039/c2dt31753b

    Article  CAS  Google Scholar 

  25. Peloquin AJ, McMillen CD, Iacono ST, Pennington WT (2021) Halogen and chalcogen bonding between the triphenylphosphine chalcogenides (Ph3P=E; E=O, S, Se) and iodofluorobenzenes. ChemPlusChem 86:549–557. https://doi.org/10.1002/cplu.202100042

    Article  PubMed  CAS  Google Scholar 

  26. Peloquin AJ, McCollum JM, McMillen CD, Pennington WT (2021) Halogen bonding in dithiane/iodofluorobenzene mixtures: a new class of hydrophobic deep eutectic solvents. Angew Chem Int Ed 80918:22983–22989. https://doi.org/10.1002/anie.202110520

    Article  CAS  Google Scholar 

  27. Peloquin AJ, Ragusa AC, McMillen CD, Pennington WT (2021) The reaction of thiourea and 1,3-dimethylthiourea towards organoiodines: oxidative bond formation and halogen bonding. Acta Crystallogr Sect C Struct Chem 77:1–11. https://doi.org/10.1107/s205322962100869x

    Article  CAS  Google Scholar 

  28. Bruker (2015) APEX3. Bruker AXS, Madison

    Google Scholar 

  29. CrystalClear (1999) Rigaku/MSC, The Woodlands

  30. Sheldrick GM (2015) Crystal structure refinement with SHELXL. Acta Crystallogr Sect C Struct Chem 71:3–8. https://doi.org/10.1107/S2053229614024218

    Article  CAS  Google Scholar 

  31. Dolomanov OV, Bourhis LJ, Gildea RJ, Howard JAK, Puschmann H (2009) OLEX2: a complete structure solution, refinement and analysis program. J Appl Crystallogr 42:339–341. https://doi.org/10.1107/S0021889808042726

    Article  CAS  Google Scholar 

  32. Bourhis LJ, Dolomanov OV, Gildea RJ, Howard JAK, Puschmann H (2015) The anatomy of a comprehensive constrained, restrained refinement program for the modern computing environment - Olex2 dissected. Acta Crystallogr Sect A 71:59–75. https://doi.org/10.1107/S2053273314022207

    Article  CAS  Google Scholar 

  33. Jay JI, Padgett CW, Walsh RDB, Hanks TW, Pennington WT (2001) Noncovalent interactions in 2-mercapto-1-methylimidazole complexes with organic iodides. Cryst Growth Des 1:501–507. https://doi.org/10.1021/cg015538a

    Article  CAS  Google Scholar 

  34. Bats JW, Seibel A, Bock H (2016) HACWOA : 1,4,8,11-tetrathiacyclotetradecane tetraiodoethene. CSD Commun CCDC. https://doi.org/10.5517/ccdc.csd.cc118s03

    Article  Google Scholar 

  35. Arman HD, Gieseking RL, Hanks TW, Pennington WT (2010) Complementary halogen and hydrogen bonding: sulfur⋯iodine interactions and thioamide ribbons. Chem Commun 46:1854–1856. https://doi.org/10.1039/b925710a

    Article  CAS  Google Scholar 

  36. Peloquin AJ, Ragusa AC, McMillen CD, Pennington WT (2021) The reaction of thiourea and 1,3-dimethylthiourea towards organoiodines: oxidative bond formation and halogen bonding. Acta Crystallogr Sect C Struct Chem 77:599–609. https://doi.org/10.1107/s205322962100869x

    Article  CAS  Google Scholar 

  37. Campaigne E, Thompson RL, Werthac JEV (1959) Some heterocyclic aldehyde thiosemicarbazones possessing anti-viral activity. J Med Pharm Chem 1:577–599. https://doi.org/10.1021/jm50007a003

    Article  PubMed  CAS  Google Scholar 

  38. Bernstein J, Yale HL, Losee K, Holsing M, Martins J, Lott WA (1951) The chemotherapy of experimental tuberculosis. III. The synthesis of thiosemicarbazones and related compounds. J Am Chem Soc 73:906–912. https://doi.org/10.1021/ja01147a007

    Article  CAS  Google Scholar 

  39. Cymerman-Craig J, Rubbo SD, Loder JW, Pierson BJ (1956) Chemical constitution and anti-tuberculous activity: Part IV. Thiosemicarbazones and related compounds. Br J Exp Pathol 37:1–4. https://doi.org/10.1007/bf01827320

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  40. Gardner TS, Smith FA, Wenis E, Lee J (1951) The synthesis of compounds for the chemotherapy of tuberculosis. I. Heterocyclic thiosemicarbazide derivatives. J Org Chem 16:1121–1125

    Article  CAS  Google Scholar 

  41. Somogyi L (2004) Synthesis, oxidation and dehydrogenation of cyclic N, O- and N, S-acetals. Part 1. Transformation of N, S-acetals: 3-acyl-1,3,4-thiadiazolines. Heterocycles 63:2243–2267. https://doi.org/10.3987/COM-04-10137

    Article  CAS  Google Scholar 

  42. Ozadali K, Unsal Tan O, Yogeeswari P, Dharmarajan S, Balkan A (2014) Synthesis and antimycobacterial activities of some new thiazolylhydrazone derivatives. Bioorgan Med Chem Lett 24:1695–1697. https://doi.org/10.1016/j.bmcl.2014.02.052

    Article  CAS  Google Scholar 

  43. Campaigne E, Neiss ES (1966) Benzo[b]thiophene derivatives. VIII. Benzo[b]thiophene-3-carboxaldehyde and derivatives. J Heterocycl Chem 3:46–50

    Article  CAS  Google Scholar 

  44. Omar AM, Ihmaid S, Habib ESE, Althagfan SS, Ahmed S, Abulkhair HS, Ahmed HEA (2020) The rational design, synthesis, and antimicrobial investigation of 2-amino-4-methylthiazole analogues inhibitors of GlcN-6-P synthase. Bioorg Chem 99:103781. https://doi.org/10.1016/j.bioorg.2020.103781

    Article  PubMed  CAS  Google Scholar 

  45. Groom CR, Bruno IJ, Lightfoot MP, Ward SC (2016) The Cambridge structural database. Acta Crystallogr Sect B Struct Sci Cryst Eng Mater 72:171–179. https://doi.org/10.1107/S2052520616003954

    Article  CAS  Google Scholar 

  46. Palenik GJ, Rendle D, Carter WS (1974) The crystal and molecular structures of thiosemicarbazones; an antitumor agent 5-hydroxy-2-formylpyridine thiosemicarbazone sesquihydrate and the inactive acetone thiosemicarbazone. Acta Crystallogr Sect B Struct Sci B30:2390–2395. https://doi.org/10.1107/s0567740874007187

    Article  Google Scholar 

  47. Ali NHSO, Hamid MHSA, Putra NAAMA, Adol HA, Mirza AH, Usman A, Siddique TA, Hoq MR, Karim MR (2020) Efficient eco-friendly syntheses of dithiocarbazates and thiosemicarbazones. Green Chem Lett Rev 13:129–140. https://doi.org/10.1080/17518253.2020.1737252

    Article  CAS  Google Scholar 

Download references

Acknowledgements

AJP acknowledges the United States Air Force Institute of Technology Civilian Institutions program and the Air Force Office of Scientific Research for fellowship support. The authors thank the NSF grants CHE-1560300 and CHE-2050042 for supporting this work.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Colin D. McMillen or William T. Pennington.

Ethics declarations

Conflict of interest

WTP is the Editor-in-Chief of the Journal of Chemical Crystallography. CDM is an Associate Editor with the Journal of Chemical Crystallography. They have been excluded from the peer review process.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (PDF 12483 kb)

Supplementary file2 (PDF 638 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Peloquin, A.J., Ragusa, A.C., Arman, H.D. et al. Synthesis of Thiosemicarbazones and Their Organoiodine Cocrystals: Cooperative Effects of Halogen and Hydrogen Bonding. J Chem Crystallogr 52, 512–524 (2022). https://doi.org/10.1007/s10870-022-00931-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10870-022-00931-7

Keywords

Navigation